(Press-News.org) Colorectal cancer has been linked to carbohydrate-rich western diets, but the underlying mechanisms have been unclear. A study published by Cell Press July 17th in the journal Cell shows that gut microbes metabolize carbohydrates in the diet, causing intestinal cells to proliferate and form tumors in mice that are genetically predisposed to colorectal cancer. Treatment with antibiotics or a low-carbohydrate diet significantly reduced tumors in these mice, suggesting that these easy interventions could prevent a common type of colorectal cancer in humans.
"Because hereditary colorectal cancer is associated with aggressive and rapid tumor development, it is critical to understand how major environmental factors such as microbes and diet interact with genetic factors to potentially affect disease progression," says senior study author Alberto Martin of the University of Toronto. "Our study provides novel insights into this question by showing that gut bacteria interact with a carbohydrate-rich diet to stimulate a prevalent type of hereditary colon cancer."
Carbohydrates account for about half of the daily caloric intake of adults on a western-style diet, and previous studies have linked carbohydrate-rich diets to colorectal cancer in humans. This type of cancer is also frequently associated with mutations in a tumor suppressor gene called APC as well as the MSH2 gene, which plays a critical role in repairing DNA damage. However, it has been unclear why mutations affecting the DNA repair pathway are much more common in colorectal cancer compared with other cancers. Because gut microbes also contribute to the development of colorectal cancer, Martin and his team suspected that they could interact with diet to explain how the mutations could cause this type of cancer.
To explore this question in the new study, Martin and his collaborators used mice that had APC and MSH2 mutations and thus were predisposed to develop colorectal cancer. Treatment with either antibiotics or a low-carbohydrate diet reduced cell proliferation as well as the number of tumors in the small intestines and colons of these mice. These two treatments also reduced levels of certain gut microbes that metabolize carbohydrates to produce a fatty acid called butyrate. When the researchers increased butyrate levels in the antibiotic-treated mice, cell proliferation and the number of tumors increased in the small intestines.
Taken together, the findings suggest that carbohydrate-derived metabolites produced by gut microbes drive abnormal cell proliferation and tumor development in mice genetically predisposed to colorectal cancer. "By providing a direct link between genetics and gut microbes, our findings suggest that a diet reduced in carbohydrates as well as alterations in the intestinal microbial community could be beneficial to those individuals that are genetically predisposed to colorectal cancer," Martin says.
INFORMATION:
Cell, Belcheva et al.: "Gut microbial metabolism drives transformation of Msh2-deficient colon epithelial cells."
Gut microbes turn carbs into colorectal cancer
2014-07-17
ELSE PRESS RELEASES FROM THIS DATE:
Brown fat found to be at the root of cancer-related wasting syndrome
2014-07-17
VIDEO:
Many patients with advanced stages of cancer, AIDS, tuberculosis, and other diseases die from a condition called cachexia, which is characterized as a "wasting " syndrome that causes extreme thinness with...
Click here for more information.
Many patients with advanced stages of cancer, AIDS, tuberculosis, and other diseases die from a condition called cachexia, which is characterized as a "wasting" syndrome that causes extreme thinness with muscle weakness. ...
Obese women may have learning deficit specific to food
2014-07-17
Obese women have a deficit in reward-based learning, but only when food is involved. Importantly, say researchers who report their findings in the Cell Press journal Current Biology on July 17, those same women have no trouble at all forming accurate associations when the reward is money instead of food. The findings may lead to new, gender-appropriate ways to tackle the obesity epidemic.
"Our study shows that obesity may involve a specific impairment not in the processing of food itself, but rather in how obese individuals—or at least obese women—learn about cues in ...
Study identifies molecular key to healthy pregnancy
2014-07-17
Scientists have identified a crucial molecular key to healthy embryo implantation and pregnancy in a study that may offer new clues about the medical challenges of infertility/subfertility, abnormal placentation, and placenta previa.
Multi-institutional teams led by researchers at Cincinnati Children's Hospital Medical Center report their results in Cell Reports on July 17. The authors found that uterine expression of a gene called Wnt5a – a major signaling molecule in cell growth and movement in both embryo development and disease – is also critical to healthy embryo ...
First comprehensive library of master genetic switches in plants
2014-07-17
Researchers have created the first comprehensive library of genetic switches in plants, setting the stage for scientists around the globe to better understand how plants adapt to environmental changes and to design more robust plants for future food security.
The collection, which took more than 8 years and $5 million to create, contains about 2,000 clones of plant transcription factors, nature's genetic on/off switches. Manipulating these transcription factors enables scientists to improve plant traits such as cold resistance or seed quantity. The research will be published ...
Faithful cell division requires tightly controlled protein placement at the centromeres
2014-07-17
CAMBRIDGE, Mass. (July 17, 2014) – From fertilized egg to adult, the cells of the human body go through an astronomical number of divisions. During division of any of the body's roughly 30 trillion cells, DNA from the initial cell must be split precisely between the two resulting cells. Critical to successful cell division is the integrity of the centromere—a region of DNA on each chromosome where the cell division machinery attaches to segregate the chromosomes. For the segregation machinery to recognize this region, it must contain many copies of a pivotal protein known ...
One third of cancer patients are killed by a 'fat-burning' process termed 'cachexia'
2014-07-17
VIDEO:
One third of cancer patients are killed by a 'fat-burning' process known as cachexia.
Click here for more information.
Most cancer researchers are working on the biology of the tumour. However, Michele Petruzzelli, a member of Erwin Wagner's group at the Spanish National Cancer Research Centre (CNIO), has been looking for ways to attack the disease indirectly. He focused on the effects of tumours on the rest of the body, and not on the tumour itself. His work on the body's ...
Researchers discover new link between obesity, inflammation, and insulin resistance
2014-07-17
La Jolla, Calif., July 17, 2014 - A new study by researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) has identified a new signal that triggers the events leading to insulin resistance in obesity. The signal causes inflammation in adipose tissue and leads to metabolic disease. The study, published July 17 in Cell Metabolism, suggests that blocking this signal may protect against the development of metabolic disease, type 2 diabetes, and other disorders caused by obesity-linked inflammation.
"We have uncovered a precise mechanism that explains how ...
New gene discovered that stops the spread of deadly cancer
2014-07-17
VIDEO:
Salk scientists have discovered the gene responsible for the aggressive spread of a common lung cancer.
Click here for more information.
LA JOLLA—Scientists at the Salk Institute have identified a gene responsible for stopping the movement of cancer from the lungs to other parts of the body, indicating a new way to fight one of the world's deadliest cancers.
By identifying the cause of this metastasis—which often happens quickly in lung cancer and results in a bleak ...
International research team discovers genetic dysfunction connected to hydrocephalus
2014-07-17
The mysterious condition once known as "water on the brain" became just a bit less murky this week thanks to a global research group led in part by a Case Western Reserve researcher. Professor Anthony Wynshaw-Boris, MD, PhD, is the co-principal investigator on a study that illustrates how the domino effect of one genetic error can contribute to excessive cerebrospinal fluid surrounding the brains of mice — a disorder known as hydrocephalus. The findings appear online July 17 in the journal Neuron.
Cerebrospinal fluid provides a cushion between the organ and the skull, ...
A region and pathway found crucial for facial development in vertebrate embryos
2014-07-17
CAMBRIDGE, Mass. (July 17, 2014) – A signaling pathway once thought to have little if any role during embryogenesis is a key player in the formation of the front-most portion of developing vertebrate embryos. Moreover, signals emanating from this region—referred to as the "extreme anterior domain" (EAD)—orchestrate the complex choreography that gives rise to proper facial structure.
The surprising findings, reported by Whitehead Institute scientists this week in the journal Cell Reports, shed new light on a key process of vertebrate embryonic development.
"The results ...