PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists discover new, noncommittal mechanism of drug resistance

Permanent mutations were once thought to be the only way for drug-resistant strains to evolve

Scientists discover new, noncommittal mechanism of drug resistance
2014-07-27
(Press-News.org) DURHAM, N.C. -- Microorganisms like bacteria and fungi can evade treatment by acquiring mutations in the genes targeted by antibiotics or antifungal drugs. These permanent mutations were once thought to be the only way for drug-resistant strains to evolve. Now a new study has shown that microorganisms can use a temporary silencing of drug targets -- known as epimutations -- to gain the benefits of drug resistance without the commitment.

Though the new mechanism was discovered in a fungus called Mucor circinelloides, it is likely to be employed by other fungi as well as bacteria, viruses and other organisms to withstand treatment with various drugs. The finding appears July 27, 2014, in Nature.

"This mechanism gives the organism more flexibility," said Joseph Heitman, M.D., Ph.D., senior study author and professor and chair of molecular genetics and microbiology at Duke University School of Medicine. "A classic, Mendelian mutation is a more permanent binding decision, like a traditional marriage. These epimutations are reversible, more akin to moving in together. If conditions change, it is easier to revert to the way things were."

The epimutations are so transient, in fact, that the researchers almost disregarded them. Cecelia Wall, a graduate student in Drs. Heitman and Maria Cardenas' labs, had been looking for mutations that would make the human fungal pathogen M. circinelloides resistant to the antifungal drug FK506 (also known as tacrolimus). This pathogen causes the rare but lethal fungal infection mucormycosis, an emerging infectious disease that predominantly affects individuals with weakened immune systems.

As is typical for most drug resistance experiments, Wall first grew the pathogen in Petri dishes containing the antifungal drug. She found that the few organisms that survived treatment looked different, being smaller and less diffuse than their parent fungi. Wall then isolated those fungi and sequenced the gene FKBP12 -- the target of FK506 -- to look for mutations that would confer drug resistance.

However, she couldn't detect any mutations in about a third of the isolates. What's more, Wall found that many of the mutants kept "disappearing," looking less like mutants and more like their parents after she took the drug away.

"This is an example of something you might find in the laboratory and just throw away," said Silvia Calo, Ph.D., lead study author and postdoctoral fellow in the Heitman and Cardenas labs. "You look for mutants in one gene and when you don't find a mutation in some of the isolates, you decide not to work on those anymore and instead focus on others. But we wanted to know what was going on."

The researchers began to wonder whether a phenomenon known as RNA interference or RNAi could be the cause of this unstable drug resistance. RNAi uses bits of RNA -- the chemical cousin of DNA -- to silence specific genes. Though RNAi doesn't exist in every organism, the researchers knew it was active in M. circinelloides because of the pioneering work of their collaborators Rosa Ruiz-Vazquez and Santiago Torres-Martinez, with whom Calo trained at the University of Murcia, Spain.

So Calo looked for the presence of small RNAs -- a signature of RNAi -- in the drug resistant isolates. She didn't find small RNAs in the isolates that contained mutations in FKBP12, but she did find them in those lacking mutations. Importantly, Calo found that these small RNAs only silenced the FKBP12 gene and not any other loci in the genome. The results demonstrate that M. circinelloides can develop drug resistance two different ways, either stably through permanent mutations or transiently through reversible epimutations.

"This plasticity enables an organism to reverse epigenetic mutations when selective pressures are relaxed," said Calo. "Otherwise, silencing a gene when it doesn't need to be silenced would be a waste of energy."

The researchers think these epimutations could be employed in a variety of situations, enabling an organism to adapt to an unfavorable environment and then adapt again when conditions improve. Though they have only shown epimutations in two species of M. circinelloides, they have already been approached by a number of other researchers who are interested in investigating similar unstable behavior in other organisms like Aspergillus and Neurospora.

"It could be like the discovery of other molecular phenomena like introns or microRNAs, where it all began with just one example," said Heitman. "We think this discovery may turn out to be generalized fairly quickly."

INFORMATION: The research was supported by grants from the National Institutes of Health (R37 MERIT Award AI39115-17, R01 AI50438-10, R01 CA154499).

CITATION: "Antifungal drug resistance evoked via RNAi-dependent epimutations," Silvia Calo, Cecelia Wall, Soo Chan Lee, Robert J. Bastidas, Francis E. Nicolás, Joshua A. Granek, Piotr Mieczkowski, Santiago Torres-Martinez, Rosa M. Ruiz-Vazquez, Maria E. Cardenas, and Joseph Heitman. Nature, July 27, 2014. DOI # 10.1038/nature13575.

[Attachments] See images for this press release:
Scientists discover new, noncommittal mechanism of drug resistance

ELSE PRESS RELEASES FROM THIS DATE:

Study: Climate change and air pollution will combine to curb food supplies

2014-07-27
Many studies have shown the potential for global climate change to cut food supplies. But these studies have, for the most part, ignored the interactions between increasing temperature and air pollution — specifically ozone pollution, which is known to damage crops. A new study involving researchers at MIT shows that these interactions can be quite significant, suggesting that policymakers need to take both warming and air pollution into account in addressing food security. The study looked in detail at global production of four leading food crops — rice, wheat, corn, ...

Drugs used to treat lung disease work with the body clock

2014-07-27
Scientists from The University of Manchester have discovered why medication to treat asthma and pneumonia can become ineffective. The findings, published in Nature Medicine, show that drugs widely used to treat lung diseases work with the body clock. In the UK pneumonia, which is caused by an infection, affects around 1 in 1000 adults each year and is more serious for babies, young children, the elderly, smokers and those with an underlying health condition. More than 5 million people in the UK are affected by asthma and the NHS spends around £1 billion a year ...

New drug target can break down cancer's barrier against treatment

2014-07-27
CANCER RESEARCH UK scientists at Barts Cancer Institute have found that targeting a molecule in blood vessels can make cancer therapy significantly more effective, according to research published in Nature today (Sunday). The team at Barts Cancer Institute, part of Queen Mary University of London, have found that a molecule, called focal adhesion kinase (FAK), signals the body to repair itself after chemotherapy or radiotherapy, which kill cancer cells by damaging DNA. When the researchers removed FAK from blood vessels that grew in melanoma or lung cancer models, both ...

Stanford team achieves 'holy grail' of battery design: A stable lithium anode

2014-07-27
Engineers across the globe have been racing to design smaller, cheaper and more efficient rechargeable batteries to meet the power storage needs of everything from handheld gadgets to electric cars. In a paper published today in the journal Nature Nanotechnology, researchers at Stanford University report that they have taken a big step toward accomplishing what battery designers have been trying to do for decades – design a pure lithium anode. All batteries have three basic components: an electrolyte to provide electrons, an anode to discharge those electrons, and ...

New tools help neuroscientists analyze 'big data'

2014-07-27
In an age of "big data," a single computer cannot always find the solution a user wants. Computational tasks must instead be distributed across a cluster of computers that analyze a massive data set together. It's how Facebook and Google mine your web history to present you with targeted ads, and how Amazon and Netflix recommend your next favorite book or movie. But big data is about more than just marketing. New technologies for monitoring brain activity are generating unprecedented quantities of information. That data may hold new insights into how the brain works ...

NIH scientists find 6 new genetic risk factors for Parkinson's

NIH scientists find 6 new genetic risk factors for Parkinsons
2014-07-27
Using data from over 18,000 patients, scientists have identified more than two dozen genetic risk factors involved in Parkinson's disease, including six that had not been previously reported. The study, published in Nature Genetics, was partially funded by the National Institutes of Health (NIH) and led by scientists working in NIH laboratories. "Unraveling the genetic underpinnings of Parkinson's is vital to understanding the multiple mechanisms involved in this complex disease, and hopefully, may one day lead to effective therapies," said Andrew Singleton, Ph.D., a ...

Surgical safety program greatly reduces surgical site infections for heart operations

2014-07-27
New York City (Sunday July 27 – 11:45 am ET): A common postoperative complication after open heart operations—infection at the surgical site—has been reduced by 77 percent at a Canadian hospital through its participation in the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP®), according to a new case study presented at the 2014 ACS NSQIP National Conference. Vancouver General Hospital in Vancouver, British Columbia, reportedly reduced its rate of cardiac surgical site infections (SSIs) using a "best practices bundle," or combination ...

Study shows epigenetic changes can drive cancer

2014-07-26
Houston -- Cancer has long been thought to be primarily a genetic disease, but in recent decades scientists have come to believe that epigenetic changes – which don't change the DNA sequence but how it is 'read' – also play a role in cancer. In particular DNA methylation, the addition of a methyl group (or molecule), is an epigenetic switch that can stably turn off genes, suggesting the potential to cause cancer just as a genetic mutation can. Until now, however, direct evidence that DNA methylation drives cancer formation was lacking. Researchers at the USDA/ARS Children's ...

Researchers uncover the secret lymphatic identity of the Schlemm's canal

2014-07-26
Glaucoma is one of the leading causes of blindness worldwide. A major risk factor for glaucoma is elevated eye pressure due to poor drainage of aqueous humor, the fluid that provides nutrients to the eye. A specialized structure, called Schlemm's canal funnels aqueous humor from the eye back into circulation. Schlemm's canal function is critical to prevent pressure build up in the eye. In this issue of the Journal of Clinical Investigation, two research groups reveal that Schlemm's canal shares features of lymphatic vessels, which maintain interstitial fluid homeostasis. ...

First national study finds trees saving lives, reducing respiratory problems

2014-07-25
SYRACUSE, N.Y., July 25, 2014– In the first broad-scale estimate of air pollution removal by trees nationwide, U.S. Forest Service scientists and collaborators calculated that trees are saving more than 850 human lives a year and preventing 670,000 incidences of acute respiratory symptoms. While trees' pollution removal equated to an average air quality improvement of less than 1 percent, the impacts of that improvement are substantial. Researchers valued the human health effects of the reduced air pollution at nearly $7 billion every year in a study published recently ...

LAST 30 PRESS RELEASES:

Global cervical cancer vaccine roll-out shows it to be very effective in reducing cervical cancer and other HPV-related disease, but huge variations between countries in coverage

Negativity about vaccines surged on Twitter after COVID-19 jabs become available

Global measles cases almost double in a year

Lower dose of mpox vaccine is safe and generates six-week antibody response equivalent to standard regimen

Personalised “cocktails” of antibiotics, probiotics and prebiotics hold great promise in treating a common form of irritable bowel syndrome, pilot study finds

Experts developing immune-enhancing therapies to target tuberculosis

Making transfusion-transmitted malaria in Europe a thing of the past

Experts developing way to harness Nobel Prize winning CRISPR technology to deal with antimicrobial resistance (AMR)

CRISPR is promising to tackle antimicrobial resistance, but remember bacteria can fight back

Ancient Maya blessed their ballcourts

Curran named Fellow of SAE, ASME

Computer scientists unveil novel attacks on cybersecurity

Florida International University graduate student selected for inaugural IDEA2 public policy fellowship

Gene linked to epilepsy, autism decoded in new study

OHSU study finds big jump in addiction treatment at community health clinics

Location, location, location

Getting dynamic information from static snapshots

Food insecurity is significant among inhabitants of the region affected by the Belo Monte dam in Brazil

The Society of Thoracic Surgeons launches new valve surgery risk calculators

Component of keto diet plus immunotherapy may reduce prostate cancer

New circuit boards can be repeatedly recycled

Blood test finds knee osteoarthritis up to eight years before it appears on x-rays

April research news from the Ecological Society of America

Antimicrobial resistance crisis: “Antibiotics are not magic bullets”

Florida dolphin found with highly pathogenic avian flu: Report

Barcodes expand range of high-resolution sensor

DOE Under Secretary for Science and Innovation visits Jefferson Lab

Research expo highlights student and faculty creativity

Imaging technique shows new details of peptide structures

MD Anderson and RUSH unveil RUSH MD Anderson Cancer Center

[Press-News.org] Scientists discover new, noncommittal mechanism of drug resistance
Permanent mutations were once thought to be the only way for drug-resistant strains to evolve