(Press-News.org) Although separated by hundreds of millions of years of evolution, flies, worms, and humans share ancient patterns of gene expression, according to a massive Yale-led analysis of genomic data.
Two related studies led by scientists at Harvard and Stanford, also published Aug. 28 in the same issue of the journal Nature, tell a similar story: Even though humans, worms, and flies bear little obvious similarity to each other, evolution used remarkably similar molecular toolkits to shape them.
However, the same Yale lab reports in a separate paper published in the Proceedings of the National Academy of Sciences dramatic differences between species in genomic regions populated by pseudogenes, molecular fossils of working genes.
The human, worm, and fly genomes are all composed of the same building blocks (i.e. nucleotides) but differ greatly in size. The human genome, for instance, is more than 10 times larger than those of the worm and fly. However, the three have comparable numbers of functioning genes that code for proteins. Even more striking, note the researchers, the three share many expression programs turning genes on and off in a coordinated fashion. The gene expression patterns were so similar, in fact, that investigators were able to use them to match up the stages in worm and fly development.
"It is remarkable to find these similarities across a half billion years,'' said Mark Gerstein, the Albert L. Williams Professor of Biomedical Informatics at Yale and senior author of one of the Nature papers. "It also illustrates how studying model organisms can help us to annotate the human genome."
The study — spearheaded by members of the Gerstein Lab, including Joel Rozowsky, Koon-Kiu Yan, Daifeng Wang, Baikang Pei, and Arif Harmanci — looked at patterns of transcription, the process by which information encoded in DNA is transferred to RNA. The paper also reported that the control of this process by the packaging of DNA is very similar in all of the organisms. In fact, the authors were able to build a quantitative model of transcription for humans and then successfully apply it without alteration to the fly and worm.
More than 200 scientists from dozens of institutions contributed to this effort, which is collectively part of the ENCODE genomics consortium. The resulting papers published in Nature all tell similar stories of shared evolution between species — for instance, the commonalities of regulatory networks of genes and the transcription factors that control their activation.
"When we look at flies or worms, it is difficult to believe that humans have anything in common with them," Gerstein said. "But now we can see deep similarities in them that better help us interpret the human genome."
Stark differences emerged, however, when Gerstein's lab looked at pseudogenes — stretches of DNA that have lost their original protein-coding gene function and are no longer under strong selective constraint, effectively representing molecular fossils. In the Aug. 25 issue of the Proceedings of the National Academy of Sciences, the Yale scientists reported vast differences between organisms in terms of these fossils, reflecting the divergent evolutionary histories of flies, worms, and humans.
"On one hand, we saw similarities that reflect biological necessity and, on the other hand, differences that mirrored the organism's history," said Cristina Sisu, postdoctoral fellow in Gerstein's lab and the first author of the pseudogene study.
INFORMATION:
The work was funded by the National Human Genome Research Institute.
Evolution used similar molecular toolkits to shape flies, worms, and humans
2014-08-27
ELSE PRESS RELEASES FROM THIS DATE:
Neuroscientists reverse memories' emotional associations
2014-08-27
CAMBRIDGE, MA -- Most memories have some kind of emotion associated with them: Recalling the week you just spent at the beach probably makes you feel happy, while reflecting on being bullied provokes more negative feelings.
A new study from MIT neuroscientists reveals the brain circuit that controls how memories become linked with positive or negative emotions. Furthermore, the researchers found that they could reverse the emotional association of specific memories by manipulating brain cells with optogenetics — a technique that uses light to control neuron activity.
The ...
Scientists map the 'editing marks' on fly, worm, human genomes
2014-08-27
The genome we inherited from our parents shapes many aspects of our lives. But in addition to our genome we have an epigenome that is set during development, but can be altered by our lifestyle habits and environmental exposures—and perhaps by those of our parents and grandparents.
The epigenome consists of chemical tags on our DNA and supporting proteins that determine whether genes are expressed or silenced.
This means we are deeply responsible for our own health, but also that it may be possible to diagnose and treat the many diseases caused by the deregulation of ...
Researchers switch emotion linked to memory
2014-08-27
Recalling an emotional experience, even years later, can bring back the same intense feelings. Researchers from the RIKEN-MIT Center for Neural Circuit Genetics revealed the brain pathway that links external events to the internal emotional state, forming one memory by engaging different brain areas. The study published in the journal Nature, also demonstrates that the positive or negative emotional valence of memory can be reversed during later memory recall.
The research team, led by Dr. Susumu Tonegawa, was interested in how brain structures like the hippocampus ...
Breaking benzene
2014-08-27
Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon?carbon bonds in these compounds plays an important role in the production of fuels and valuable chemicals from natural resources. However, aromatic carbon-carbon bonds are very stable and difficult to break. In the chemical industry, the cleavage of these bonds requires the use of solid catalysts at high temperatures, usually giving rise to a mixture of products, and the mechanisms are still poorly understood.
Now, in research published in Nature, Zhaomin Hou ...
Walking fish reveal how our ancestors evolved onto land
2014-08-27
VIDEO:
Polypterus senegalus walks across a sandy substrate. Fish use their fins and body in combination to move across a terrestrial substrate. Fins are planted one after the other to lift...
Click here for more information.
About 400 million years ago a group of fish began exploring land and evolved into tetrapods – today's amphibians, reptiles, birds, and mammals. But just how these ancient fish used their fishy bodies and fins in a terrestrial environment and what evolutionary ...
NIH issues finalized policy on genomic data sharing
2014-08-27
The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while protecting the privacy of research participants. The final policy was posted in the Federal Register Aug. 26, 2014 and published in the NIH Guide for Grants and Contracts Aug. 27, 2014.
Starting with funding applications submitted for a Jan. 25, 2015, receipt date, the policy will apply to all NIH-funded, large-scale human and non-human projects that ...
Scientists looking across human, fly and worm genomes find shared biology
2014-08-27
Researchers analyzing human, fly, and worm genomes have found that these species have a number of key genomic processes in common, reflecting their shared ancestry. The findings, appearing Aug. 28, 2014, in the journal Nature, offer insights into embryonic development, gene regulation and other biological processes vital to understanding human biology and disease.
The studies highlight the data generated by the modENCODE Project and the ENCODE Project, both supported by the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health. ...
Worms, flies and humans... Our common genomic legacy, key to understanding cell biology
2014-08-27
This news release is available in Spanish. Genomes accumulate changes and mutations throughout evolution. These changes have resulted in a huge diversity of species and in different traits between us. But animal cells, whether they are from a fly or a human, work similarly: they have common molecular mechanisms.
Based on this premise, an international consortium with participation of scientists from the Centre for Genomic Regulation in Barcelona have compared the transcriptome (the RNA complement of a species' cell) of different animal species. They used data from ...
Snowfall in a warmer world
2014-08-27
If ever there were a silver lining to global warming, it might be the prospect of milder winters. After all, it stands to reason that a warmer climate would generate less snow.
But a new MIT study suggests that you shouldn't put your shovels away just yet. While most areas in the Northern Hemisphere will likely experience less snowfall throughout a season, the study concludes that extreme snow events will still occur, even in a future with significant warming. That means that, for example, places like Boston may see less snowy winters overall, punctuated in some years ...
Researchers change the emotional association of memories
2014-08-27
By manipulating neural circuits in the brain of mice, scientists have altered the emotional associations of specific memories. The research, led by Howard Hughes Medical Institute investigator Susumu Tonegawa at the Massachusetts Institute of Technology (MIT), reveals that the connections between the part of the brain that stores contextual information about an experience and the part of the brain that stores the emotional memory of that experience are malleable.
Altering those connections can transform a negative memory into a positive one, Tonegawa and his MIT colleagues ...