PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Nuclear spins control current in plastic LED

Step toward quantum computing, spintronic memory, better displays

2014-09-19
(Press-News.org) SALT LAKE CITY, Sept. 18, 2014 – University of Utah physicists read the subatomic "spins" in the centers or nuclei of hydrogen isotopes, and used the data to control current that powered light in a cheap, plastic LED – at room temperature and without strong magnetic fields.

The study – published in Friday's issue of the journal Science – brings physics a step closer to practical machines that work "spintronically" as well as electronically: superfast quantum computers, more compact data storage devices and plastic or organic light-emitting diodes, or OLEDs, more efficient than those used today in display screens for cell phones, computers and televisions.

"We have shown we can use room-temperature, plastic electronic devices that allow us to see the orientation of the tiniest magnets in nature – the spins in the smallest atomic nuclei," says physics professor Christoph Boehme, one of the study's principal authors. "This is a step that may lead to new ways to store information, produce better displays and make faster computers."

The experiment is a much more practical version of a study Boehme and colleagues published in Science in 2010, when they were able to read nuclear spins from phosphorus atoms in a conventional silicon semiconductor. But they could only do so when the apparatus was chilled to minus 453.9 degrees Fahrenheit (nearly absolute zero), was bombarded with intense microwaves and exposed to superstrong magnetic fields.

In the new experiments, the physicists were able to read the nuclear spins of two isotopes of hydrogen: a single proton and deuterium, which is a proton, neutron and electron. The isotopes were embedded in an inexpensive plastic polymer or organic semiconductor named MEH-PPV, an OLED that glows orange when current flows.

The researchers flipped the spins of the hydrogen nuclei to control electrical current flowing though the OLED, making the current stronger or weaker. They did it at room temperature and without powerful light bombardment or magnetic fields – in other words, at normal operating conditions for most electronic devices, Boehme says.

"This experiment is remarkable because the magnetic forces created by the nuclei are millions of times smaller than the electrostatic forces that usually drive currents," yet they were able to control currents, he says.

Harnessing nuclear spins can increase the efficiency "of electronic materials out of which so much technology is made," Boehme adds. "It also raises the question whether this effect can be used for technological applications such as computer chips that use nuclear spins as memory and our method as a way to read the spins."

The U.S. Department of Energy funded the new study, and the physicists used facilities of the University of Utah's Materials Research Science and Engineering Center, funded by the National Science Foundation.

Boehme conducted the study with fellow University of Utah physicists: first author and postdoctoral fellow Hans Malissa; research professor and co-senior author John Lupton, who also is on the faculty of the University of Regensburg, Germany; distinguished professor Z. Valy Vardeny; professor Brian Saam; graduate students Marzieh Kavand and David Waters; and postdoctoral fellow Kipp van Schooten. Another co-author was Paul Burn of Australia's University of Queensland.

Spintronics: Storing Data in Atomic Nuclei

Electronic devices use electrical current or electrons, which are negatively charged particles orbiting the nuclei or centers of atoms. Modern computers store data electronically: data are stored as binary "bits" in which zero is represented by "off," or no electrical charge, and one is represented by "on" or the presence of electrical charge.

In spintronics, data are stored by the spins of either electrons or, preferably, atomic nuclei. Spin often is compared with a tiny bar magnet like a compass needle, either pointing up or down – representing one or zero – in an electron or an atom's nucleus. Nuclear spin orientations live longer, so are better for storing data.

The 2010 study by Boehme and colleagues showed that nuclear spins of phosphorus in a silicon semiconductor could control electrical current, but at impractically low temperatures and strong magnetic fields. They had to use the magnetic fields to align spins of phosphorus electrons in the same direction, and then use intense light to transfer the same alignment to the spins of phosphorus nuclei. Then they bombarded the semiconductor with radio waves to reverse the nuclear spins and control the current.

Boehme says scientists previously have claimed that current in plastic semiconductors – known formally as pi-conjugated polymers – can be controlled by the nuclear spins in hydrogen. Until the new study, "nobody has ever shown it directly" at room temperature by turning nuclear spins to change an electrical current, he adds.

The New Study

In the new experiments, the physicists used magnetic resonance to reverse the nuclear spins in hydrogen isotopes embedded in the OLED, and then were able to detect how the reversed spins caused a change in the electrical current through the OLED.

In the first two experiments, Boehme says, the physicists made nuclear spins in a proton and deuterium wiggle in characteristic ways, and were able to read corresponding wiggles in the resulting electrical current. In a third experiment, they flipped the spins back and forth at a rate they wanted instead of at the characteristic frequencies.

"It worked," Boehme says. "This shows you can turn a nuclear spin when you want, and only then the current turns around. We can control a current by controlling nuclear spins."

The researchers measured the current change directly, but not resulting changes in the OLED's light output – changes so small they aren't detectable with the naked eye.

In both the 2010 and the new studies, the physicists did not read the spins of individual nuclei, but the collective spins of more than 1 million nuclei at a time. The ultimate goal is to be able to read the spins of nuclei individually.

"If you want to store information, the highest storage density would be to store information in single nuclear spins," Boehme says. Since the 2010 study, other physicists have achieved that in phosphorus nuclei, he adds.

Benefits of Spintronics

By storing information using both spins and electrical charge, spintronic devices should have greater storage capacity and process data more quickly – although researchers still have years to go to figure out how to connect and process spintronically stored information in futuristic computers, conventional and quantum.

"We don't know if its five years, 50 years or never," Boehme says.

Yet he says spintronics already resulted in today's terabyte-sized computer hard drives, which use spintronic "read heads" so small that data can be stored more densely.

In 2012, Boehme and colleagues showed the same spintronic OLED in the new study works as a "dirt cheap" magnetic field sensor at room temperature without being compromised by degradation. Such sensors may enable more accurate spacecraft navigation systems, he says.

Because nuclear spin-controlled electrical current regulates output of light by the OLED, it provides a way to study how to make OLEDs more efficient. OLEDs convert far more electricity into light than incandescent light bulbs, which turn most incoming electricity into heat. But there is much more room for improved efficiency.

"Hopefully, OLEDs will become better – use less electricity and produce more light – because we learned here how nuclear spins' orientation influences how well the OLED works," Boehme says. "Any sort of efficiency limitation can only be overcome if the mechanism that imposes this limitation is understood."

INFORMATION: University of Utah Communications 75 Fort Douglas Boulevard, Salt Lake City, UT 84113
Phone: 801-581-6773
Fax: 801-585-3350 unews.utah.edu


ELSE PRESS RELEASES FROM THIS DATE:

Changes in coastal upwelling linked to temporary declines in marine ecosystem

2014-09-19
In findings of relevance to both conservationists and the fishing industry, new research links short-term reductions in growth and reproduction of marine animals off the California Coast to increasing variability in the strength of coastal upwelling currents — currents which historically supply nutrients to the region's diverse ecosystem. Along the west coast of North America, winds lift deep, nutrient-rich water into sunlit surface layers, fueling vast phytoplankton blooms that ultimately support fish, seabirds and marine mammals. The new study, led by Bryan Black ...

World population to keep growing this century, hit 11 billion by 2100

2014-09-19
Using modern statistical tools, a new study led by the University of Washington and the United Nations finds that world population is likely to keep growing throughout the 21st century. The number of people on Earth is likely to reach 11 billion by 2100, the study concludes, about 2 billion higher than some previous estimates. The paper published online Sept. 18 in the journal Science includes the most up-to-date estimates for future world population, as well as a new method for creating such estimates. "The consensus over the past 20 years or so was that world population, ...

Scientists discover 'dimmer switch' for mood disorders

2014-09-19
Researchers at University of California, San Diego School of Medicine have identified a control mechanism for an area of the brain that processes sensory and emotive information that humans experience as "disappointment." The discovery of what may effectively be a neurochemical antidote for feeling let-down is reported Sept. 18 in the online edition of Science. "The idea that some people see the world as a glass half empty has a chemical basis in the brain," said senior author Roberto Malinow, MD, PhD, professor in the Department of Neurosciences and neurobiology section ...

Study shows how epigenetic memory is passed across generations

2014-09-19
A growing body of evidence suggests that environmental stresses can cause changes in gene expression that are transmitted from parents to their offspring, making "epigenetics" a hot topic. Epigenetic modifications do not affect the DNA sequence of genes, but change how the DNA is packaged and how genes are expressed. Now, a study by scientists at the University of California, Santa Cruz, shows how epigenetic memory can be passed across generations and from cell to cell during development. The study, published September 19 in Science, focused on one well studied epigenetic ...

New insights into the world of quantum materials

2014-09-19
This news release is available in German. How a system behaves is determined by its interaction properties. An important concept in condensed matter physics for describing the energy distribution of electrons in solids is the Fermi surface, named for Italian physicist Enrico Fermi. The existence of the Fermi surface is a direct consequence of the Pauli exclusion principle, which forbids two identical fermions from occupying the same quantum state simultaneously. Energetically, the Fermi surface divides filled energy levels from the empty ones. For electrons and other ...

A more efficient, lightweight and low-cost organic solar cell

2014-09-19
AMHERST, Mass. – For decades, polymer scientists and synthetic chemists working to improve the power conversion efficiency of organic solar cells were hampered by the inherent drawbacks of commonly used metal electrodes, including their instability and susceptibility to oxidation. Now for the first time, researchers at the University of Massachusetts Amherst have developed a more efficient, easily processable and lightweight solar cell that can use virtually any metal for the electrode, effectively breaking the "electrode barrier." This barrier has been a big problem ...

Pupil size shows reliability of decisions

2014-09-19
The precision with which people make decisions can be predicted by measuring pupil size before they are presented with any information about the decision, according to a new study published in PLOS Computational Biology this week. The study, conducted by Peter Murphy and colleagues at Leiden University, showed that spontaneous, moment-to-moment fluctuations in pupil size predicted how a selection of participants varied in their successful decision making. A larger pupil size indicated poorer upcoming task performance, due to more variability in the decisions made once ...

World breakthrough: A new molecule allows for an increase in stem cell transplants

2014-09-19
This news release is available in French. Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Université de Montréal have just published, in the prestigious magazine Science, the announcement of the discovery of a new molecule, the first of its kind, which allows for the multiplication of stem cells in a unit of cord blood. Umbilical cord stem cells are used for transplants aimed at curing a number of blood-related diseases, including leukemia, myeloma and lymphoma. For many patients this therapy comprises a treatment of last resort. Directed ...

Toward optical chips

2014-09-19
Chips that use light, rather than electricity, to move data would consume much less power — and energy efficiency is a growing concern as chips' transistor counts rise. Of the three chief components of optical circuits — light emitters, modulators, and detectors — emitters are the toughest to build. One promising light source for optical chips is molybdenum disulfide (MoS2), which has excellent optical properties when deposited as a single, atom-thick layer. Other experimental on-chip light emitters have more-complex three-dimensional geometries and use rarer materials, ...

Mouse model sheds light on role of mitochondria in neurodegenerative diseases

2014-09-19
(SALT LAKE CITY)—A new study by researchers at the University of Utah School of Medicine sheds light on a longstanding question about the role of mitochondria in debilitating and fatal motor neuron diseases and resulted in a new mouse model to study such illnesses. Researchers led by Janet Shaw, Ph.D., professor of biochemistry, found that when healthy, functioning mitochondria was prevented from moving along axons – nerve fibers that conduct electricity away from neurons – mice developed symptoms of neurodegenerative diseases. In a study in the Proceedings of the ...

LAST 30 PRESS RELEASES:

Global cervical cancer vaccine roll-out shows it to be very effective in reducing cervical cancer and other HPV-related disease, but huge variations between countries in coverage

Negativity about vaccines surged on Twitter after COVID-19 jabs become available

Global measles cases almost double in a year

Lower dose of mpox vaccine is safe and generates six-week antibody response equivalent to standard regimen

Personalised “cocktails” of antibiotics, probiotics and prebiotics hold great promise in treating a common form of irritable bowel syndrome, pilot study finds

Experts developing immune-enhancing therapies to target tuberculosis

Making transfusion-transmitted malaria in Europe a thing of the past

Experts developing way to harness Nobel Prize winning CRISPR technology to deal with antimicrobial resistance (AMR)

CRISPR is promising to tackle antimicrobial resistance, but remember bacteria can fight back

Ancient Maya blessed their ballcourts

Curran named Fellow of SAE, ASME

Computer scientists unveil novel attacks on cybersecurity

Florida International University graduate student selected for inaugural IDEA2 public policy fellowship

Gene linked to epilepsy, autism decoded in new study

OHSU study finds big jump in addiction treatment at community health clinics

Location, location, location

Getting dynamic information from static snapshots

Food insecurity is significant among inhabitants of the region affected by the Belo Monte dam in Brazil

The Society of Thoracic Surgeons launches new valve surgery risk calculators

Component of keto diet plus immunotherapy may reduce prostate cancer

New circuit boards can be repeatedly recycled

Blood test finds knee osteoarthritis up to eight years before it appears on x-rays

April research news from the Ecological Society of America

Antimicrobial resistance crisis: “Antibiotics are not magic bullets”

Florida dolphin found with highly pathogenic avian flu: Report

Barcodes expand range of high-resolution sensor

DOE Under Secretary for Science and Innovation visits Jefferson Lab

Research expo highlights student and faculty creativity

Imaging technique shows new details of peptide structures

MD Anderson and RUSH unveil RUSH MD Anderson Cancer Center

[Press-News.org] Nuclear spins control current in plastic LED
Step toward quantum computing, spintronic memory, better displays