(Press-News.org) VIDEO:
Researchers at the CRG try to understand how networks of genes work together to create specific patterns like stripes.
They have gone beyond studying individual networks and have created computational and...
Click here for more information.
Pattern formation is essential in the development of animals and plants. The central problem in pattern formation is how can genetic information be translated in a reliable manner to give specific spatial patterns of cellular differentiation.
The French-flag model of stripe formation is a classic paradigm in developmental biology. Cell differentiation, represented by the different colours of the French flag, is caused by a gradient of a signalling molecule (morphogen); i.e. at high, middle or low concentrations of the morphogen a "blue", "white" or "red" gene stripe is activated, respectively. How cellular gene regulatory networks (GRNs) respond to the morphogen, in a concentration-dependent manner, is a pivotal question in developmental biology. Synthetic biology is a promising new tool to study the function and properties of gene regulatory networks (GRNs) by building them from first principles. This study developed synthetic biology methods to build some of the fundamental mechanisms behind stripe formation.
In previous studies, gene circuits with predefined behaviors have been successfully built and modeled, but mostly on a case-by-case basis. In this study published in Nature Communications, researchers from the EMBL/CRG Systems Biology Research Unit at the CRG, went beyond individual networks and explored both computational and synthetic mechanisms for a complete set of 3-node stripe-forming networks in Escherichia coli. The approach combined experimental synthetic biology led by Mark Isalan, now Reader in Gene Network Engineering at the Department of Life Sciences of Imperial College London with computational modelling led by James Sharpe, ICREA Research Professor and head of the Multicellular Systems Biology lab at the CRG.
"We have performed a very innovative and ambitious study: we applied a three-step approach for the effective exploration and creation of successful synthetic gene circuits. We created a theoretical framework to study the GRNs exhaustively" - 100,000 versions of over 2800 networks were simulated on the computer. We then successfully developed a synthetic network engineering system and, finally, we confirmed all the new experimental data by fitting it to a single mathematical model" explains the corresponding author James Sharpe.
First, Andreea Munteanu, co-author of the study, performed a theoretical screen for finding all design classes that produce the desired behaviour (stripe formation in a morphogen gradient). During this step she discovered four fundamentally-different mechanisms for forming a stripe. Next, Yolanda Schaerli, first author of the study, successfully demonstrated that the four networks are functional by building them in the bacteria E. coli using the tools of synthetic biology. The third step was to verify the distinct mechanisms by fitting all the experimental data to a mathematical model.
The success of this procedure allowed the researchers to go one step further to find a deeper design principle of stripe formation. They identified a simpler 2-node network – where the stripe gene is directly controlled by both activation and repression from the morphogen sensor gene– that replicates the stripe-forming ability in its simplest form. They were successful in building this archetype of stripe forming networks and ultimately discovered that it can even display an "anti-stripe" phenotype (fig. 2, bacterial lawns).
"Combining exhaustive computational modeling with synthetic biology is more efficient and powerful than building networks one-by-one" says the corresponding author Mark Isalan. "Our approach provides a new and efficient recipe for synthetic biology - a new scientific discipline which aims to engineer all kinds of useful biological systems"
INFORMATION:
The study was funded by the following agencies: Swiss National Science Foundation (SNSF) Fellowship, Marie Skłodowska-Curie Action (MSCA), Ministry of Economy and Competitiveness (MINECO) through the program "Severo Ochoa Centres of Excellence", Fundació Marató de TV3, Institut Catalan de Recerca i Estudis Avancats (ICREA), European Research Council (ERC), and the MINECO-EMBL agreement.
Recreating the stripe patterns found in animals by engineering synthetic gene networks
A new study on how to engineer synthetic gene networks, recreates the stripe patterns found in animals, using bacteria
2014-09-23
ELSE PRESS RELEASES FROM THIS DATE:
Airway muscle-on-a-chip mimics asthma
2014-09-23
The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people in the United States alone to wheeze, cough, and find it difficult at best to take a deep breath.
But finding new treatments is tough: asthma is a patient-specific disease, so what works for one person doesn't necessarily work for another, and the animal models traditionally used to test new drug candidates often fail to mimic human responses – costing tremendous ...
Eating five a day may keep the blues away
2014-09-23
Fruit and vegetable consumption could be as good for your mental as your physical health, new research suggests.
The research, conducted by the University of Warwick's Medical School using data from the Health Survey for England, and published by BMJ Open focused on mental wellbeing and found that high and low mental wellbeing were consistently associated with an individual's fruit and vegetable consumption.
33.5% of respondents with high mental wellbeing ate five or more portions of fruit and vegetables a day, compared with only 6.8% who ate less than one portion. ...
Southampton scientists grow a new challenger to graphene
2014-09-23
A team of researchers from the University of Southampton's Optoelectronics Research Centre (ORC) has developed a new way to fabricate a potential challenger to graphene.
Graphene, a single layer of carbon atoms in a honeycomb lattice, is increasingly being used in new electronic and mechanical applications, such as transistors, switches and light sources, thanks to the unprecedented properties it offers: very low electrical resistance, high thermal conductivity and mechanically stretchable yet harder than diamond.
Now, ORC researchers have developed molybdenum di-sulphide ...
Search for better biofuels microbes leads to the human gut
2014-09-23
CHAMPAIGN, Ill. — Scientists have scoured cow rumens and termite guts for microbes that can efficiently break down plant cell walls for the production of next-generation biofuels, but some of the best microbial candidates actually may reside in the human lower intestine, researchers report.
Their study, reported in the Proceedings of the National Academy of Sciences, is the first to use biochemical approaches to confirm the hypothesis that microbes in the human gut can digest fiber, breaking it down into simple sugars in order to ferment them into nutrients that nourish ...
Results of the 1st EORTC Cancer Survivorship Summit
2014-09-23
A special issue of the European Journal of Cancer presents detailed reports on the wide range of research presented during the 1st EORTC Cancer Survivorship Summit held this past January in Brussels, Belgium.
Early diagnosis, targeted therapeutics, and more personalized multimodal treatments has boosted survival rates of patients with cancer and led to a large and rapidly increasing number of cancer survivors. Despite this good news, cancer survivors are often confronted with a broad spectrum of late adverse treatment effects and some must also deal with societal discrimination ...
Nanotubes help healing hearts keep the beat
2014-09-23
Carbon nanotubes serve as bridges that allow electrical signals to pass unhindered through new pediatric heart-defect patches invented at Rice University and Texas Children's Hospital.
A team led by bioengineer Jeffrey Jacot and chemical engineer and chemist Matteo Pasquali created the patches infused with conductive single-walled carbon nanotubes. The patches are made of a sponge-like bioscaffold that contains microscopic pores and mimics the body's extracellular matrix.
The nanotubes overcome a limitation of current patches in which pore walls hinder the transfer ...
Study uncovers genetic driver of inflammation, uses it to prevent and treat liver cancer
2014-09-23
Inflammation has been shown to be a driving force behind many chronic diseases, especially liver cancer, which often develops due to chronic inflammation caused by conditions such as viral hepatitis or alcoholism and has relatively few effective treatment options. Now, scientists at Virginia Commonwealth University Massey Cancer Center have demonstrated for the first time in preclinical studies that blocking the expression of a gene known as astrocyte elevated gene-1 (AEG-1) halts the development and progression of liver cancer by regulating inflammation. This research ...
Mother-infant bed sharing messaging should be tailored, according to UGA researcher
2014-09-23
Athens, Ga. – Bed sharing, a practice where mother and infant sleep on the same surface, remains popular all over the world despite potential health risks for the infant. According to a new University of Georgia study, bed sharing can likely be decreased if public health officials tailor messaging to their unique population.
Trina Salm Ward, assistant professor in the UGA School of Social Work and assistant professor of health promotion and behavior in the College of Public Health, reviewed literature on bed sharing in "Reasons for Mother-Infant Bed-Sharing: A Systematic ...
Interdisciplinary research team finds method for more precise diagnosis of pneumonia
2014-09-23
WASHINGTON (Sept. 23, 2014) — A patient survives life-threatening trauma, is intubated in the intensive care unit (ICU) to support his or her affected vital functions, starts to recover, and then develops pneumonia. It's a scenario well-known to physicians, who understand that the development of ventilator-associated pneumonia in critically ill patients often results in significant morbidity, mortality, and additional health care costs.
An interdisciplinary team of George Washington University (GW) researchers are investigating more accurate and rapid methods of identification ...
Life, liberty, and the pursuit of healthcare?
2014-09-23
The Affordable Care Act — "Obamacare" — was signed into law in 2010 and promised the largest overhaul of the U.S. healthcare system since the 1960s. Designed to provide medical care to uninsured Americans, it has been widely decried as an unwarranted intrusion into the affairs of private businesses and individuals.
However, an independent comparative study of healthcare systems in six Western countries, published last month in Social Science and Medicine, supports a move away from privatized medicine toward state-sponsored healthcare systems. In her research, Dina Maskileyson ...
LAST 30 PRESS RELEASES:
Post-LLM era: New horizons for AI with knowledge, collaboration, and co-evolution
“Sloshing” from celestial collisions solves mystery of how galactic clusters stay hot
Children poisoned by the synthetic opioid, fentanyl, has risen in the U.S. – eight years of national data shows
USC researchers observe mice may have a form of first aid
VUMC to develop AI technology for therapeutic antibody discovery
Unlocking the hidden proteome: The role of coding circular RNA in cancer
Advancing lung cancer treatment: Understanding the differences between LUAD and LUSC
Study reveals widening heart disease disparities in the US
The role of ubiquitination in cancer stem cell regulation
New insights into LSD1: a key regulator in disease pathogenesis
Vanderbilt lung transplant establishes new record
Revolutionizing cancer treatment: targeting EZH2 for a new era of precision medicine
Metasurface technology offers a compact way to generate multiphoton entanglement
Effort seeks to increase cancer-gene testing in primary care
Acoustofluidics-based method facilitates intracellular nanoparticle delivery
Sulfur bacteria team up to break down organic substances in the seabed
Stretching spider silk makes it stronger
Earth's orbital rhythms link timing of giant eruptions and climate change
Ammonia build-up kills liver cells but can be prevented using existing drug
New technical guidelines pave the way for widespread adoption of methane-reducing feed additives in dairy and livestock
Eradivir announces Phase 2 human challenge study of EV25 in healthy adults infected with influenza
New study finds that tooth size in Otaria byronia reflects historical shifts in population abundance
nTIDE March 2025 Jobs Report: Employment rate for people with disabilities holds steady at new plateau, despite February dip
Breakthrough cardiac regeneration research offers hope for the treatment of ischemic heart failure
Fluoride in drinking water is associated with impaired childhood cognition
New composite structure boosts polypropylene’s low-temperature toughness
While most Americans strongly support civics education in schools, partisan divide on DEI policies and free speech on college campuses remains
Revolutionizing surface science: Visualization of local dielectric properties of surfaces
LearningEMS: A new framework for electric vehicle energy management
Nearly half of popular tropical plant group related to birds-of-paradise and bananas are threatened with extinction
[Press-News.org] Recreating the stripe patterns found in animals by engineering synthetic gene networksA new study on how to engineer synthetic gene networks, recreates the stripe patterns found in animals, using bacteria