PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Researchers watch, in real time, the dynamic motion of HIV as it readies an attack

Studies in both science and nature provide key insights into the biology of the virus

2014-10-08
(Press-News.org) NEW YORK — (October 8, 2014) -- Researchers at Weill Cornell Medical College have developed technologies that allow investigators, for the first time, to watch what they call the "dance" of HIV proteins on the virus' surface, which may contribute to how it infects human immune cells. Their discovery is described in the Oct. 8 issue of Science, and is also a part of a study published the same day in Nature.

The new technology platform opens new possibilities for devising an approach to prevent HIV infection, says Dr. Scott Blanchard, an associate professor of physiology and biophysics at Weill Cornell, and one of three co-lead authors on the Science study. He is also an author on the Nature paper that describes a three-dimensional structure of one of the shapes, or conformations of the HIV protein.

"Making the movements of HIV visible so that we can follow, in real time, how surface proteins on the virus behave will hopefully tell us what we need to know to prevent fusion with human cells — if you can prevent viral entry of HIV into immune cells, you have won," says Dr. Blanchard, who is also associate director of Weill Cornell's chemical biology program.

"What we have shown in the Science study is that we now have the means to obtain real-time images of processes happening on the surface of intact HIV particles, which we now plan to use to screen the impact of drugs and antibodies that can shut it down," he says.

"We desperately need solutions to prevent HIV infection, which, to date, has infected or killed more than 70 million people worldwide," Dr. Blanchard says. If this technology proves useful in HIV management, it could potentially be used to decode infection processes for other viruses, he says.

Using Light to Watch HIV Dance

In the Science study, Dr. Blanchard worked with Dr. Walther Mothes, a HIV specialist at the Yale University School of Medicine, and with Dr. James Munro, who was Dr. Blanchard's first graduate student and who is now an assistant professor at Tufts University School of Medicine. Drs. Mothes and Munro are the two other co-lead investigators.

Dr. Blanchard adapted an imaging technique that uses fluorescence to measure distance on molecular scale – single-molecule fluorescence resonance energy transfer (smFRET) imaging – to study viral particles. His group developed fluorescent molecules (fluorophores) — which he dubs "beacons" — and the team inserted them into the virus's outer covering, known as the envelope. With two of these special beacons in place, smFRET imaging can be used to visualize how the molecules move over time, when the virus proteins change conformation. The approach provides a measure of distances, on the order of a billionth of an inch, between two beacons glowing in different colors, and this can be used to detect shape shifting as it occurs and the attached beacons move.

The team used the technology to study motions of proteins on the surface of the HIV virus (called envelope proteins) that are key to the virus's ability to infect human immune cells carrying CD4 receptor proteins. (CD4 receptor proteins help HIV bind to a cell.) The envelope consists of three gp120 and gp41 proteins positioned close together, and referred to as "trimers," that open up like a flower in the presence of CD4, exposing the gp41 subunit that is essential for subsequent aspects of the mechanism that causes infection.

"There are 10-20 such envelope trimers on the surface of each HIV particle, and they mutate rapidly, thereby evading typical immune responses. This is why it is so difficult for humans to mount an effective immune response and why it is challenging for researchers to develop vaccines targeting the HIV envelope proteins," Dr. Blanchard says. The researchers were able to study proteins from two different strains of HIV, which contained beacons that did not alter the biology of the particles.

Then they watched.

They saw that the gp120 proteins' virus particles changed shape constantly and that the timing and nature of their movements were both similar and distinct. "This answered the first big question of how opening of the envelope trimer is triggered," Dr. Blanchard says. "Many scientists believe that the particles remain in one conformation until they come across a CD4-positive cell. But we saw that the proteins dance when no CD4 was present — they change shape all the time."

The researchers were then able to watch how the viruses responded when synthetic CD4 was introduced. They also saw that antibodies known to exhibit some effectiveness acted to prevent gp120 from opening, and that these effects correlated with a decrease in the virus' ability to infect cells. Similar things happened when they introduced a small molecule now under development to prevent HIV infection.

"The practical outcome from this technology is that we can begin to understand how the biological system moves. So far we have detected three different conformations of the envelope trimer. We are working now to improve the technology to achieve the imaging precision we need to make broadly effective therapies," Blanchard says.

Technologies Work Hand in Hand

The Nature study, led by researchers at the National Institute of Allergy and Infectious Diseases, used X-ray crystallography to capture a three-dimensional structure of one of the conformations revealed in the Science paper. The protein constructs used in this investigation were originally developed by a team of researchers headed by Dr. John Moore, professor of microbiology and immunology at Weill Cornell.

"The antibodies used in the crystallography study are ones that we observed to stop the dance of the HIV envelope proteins, pushing the trimer assembly into a quiescent, ground state," Dr. Blanchard says.

"This concrete, atomic resolution picture of what the pre-fusion machinery looks like and where these antibodies bind provides an important step forward to understanding HIV's biology," he says.

Dr. Blanchard believes both techniques — smFRET and X-ray crystallography — can work hand in hand to help scientists describe the functions of molecules from the perspective motion, including the other two distinct conformations identified in the smFRET study.

"The approach is really a breakthrough for science because most research is done in a test tube where billions of molecules are present, all behaving independently. It is very difficult to extract direct information about these types of movements from indirect observations," such as those that don't use imaging technology, he says. "The single-molecule approach allows practical, interpretable, real-time information to be obtained about molecular processes in complex biological systems."

INFORMATION:

This work was supported by NIH grants R21 AI100696, P01 56550, and R01 GM098859, by the Irvington Fellows Program of the Cancer Research Institute, a fellowship from the China Scholarship Council-Yale World Scholars, grants from the International AIDS Vaccine Initiative's (IAVI) Neutralizing Antibody Consortium, the NIH Intramural Research Program (Vaccine Research Center), the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID). Support for the Nature study was provided by the Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health, and by grants from the Division of AIDS, NIAID, National Institutes of Health for CHAVI and CHAVI-Immunogen Discovery Centers, from the National Institutes of General Medical Sciences, from the Irvington Fellows Program of the Cancer Research Program, and from the International AIDS Vaccine Initiative's Neutralizing Antibody Consortium. Use of sector 22 (Southeast Region Collaborative Access team) at the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract number W-31-109-Eng-38.

Contributing to the Science study were Xiaochu Ma (Yale University School of Medicine), Jason Gorman, Peter D. Kwong and James Arthos (National Institute of Allergy and Infectious Diseases), Zhou Zhou (Weill Cornell Medical College), Dennis R. Burton (The Scripps Research Institute), Wayne C. Koff (International AIDS Vaccine Initiative), Joel R. Courter and Amos B. Smith III (the University of Pennsylvania). Co-authors of the Nature study are Peter D. Kwong, Marie Pancera, Tongqing Zhou, Aliaksandr Druz, Ivelin S. Georgiev, Cinque Soto, Jason Gorman, Priyamvada Acharya, Gwo-Yu Chuang, Gilad Ofek, Guillaume B. E. Stewart-Jones, Jonathan Stuckey, Robert T. Bailer, M. Gordon Joyce, Mark K. Louder, Yongping Yang, Baoshan Zhang, and John R. Mascola (National Institute of Allergy and Infectious Diseases), Jinghe Huang, Mark Connors, Nancy Tumba and Lynn Morris (National Institute of Allergy and Infectious Diseases), Myron S. Cohen (National Institute for Communicable Diseases of the National Health Laboratory Service, South Africa), Barton F. Haynes (Duke University), James B. Munro and Walther Mothes (Yale University School of Medicine).

Technologies invented in the Blanchard lab have been licensed to the Lumidyne Corporation.

Weill Cornell Medical College Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances — including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with Houston Methodist.



ELSE PRESS RELEASES FROM THIS DATE:

Hungry black hole eats faster than thought possible

Hungry black hole eats faster than thought possible
2014-10-08
Astronomers have discovered a black hole that is consuming gas from a nearby star 10 times faster than previously thought possible. The black hole—known as P13—lies on the outskirts of the galaxy NGC7793 about 12 million light years from Earth and is ingesting a weight equivalent to 100 billion billion hot dogs every minute. The discovery was published today in the journal Nature. International Centre for Radio Astronomy Research astronomer Dr Roberto Soria, who is based at ICRAR's Curtin University node, said that as gas falls towards a black hole it gets ...

Astronomers see right into heart of exploding star

Astronomers see right into heart of exploding star
2014-10-08
An international team of astronomers has been able to see into the heart of an exploding star, by combining data from telescopes that are hundreds or even thousands of kilometres apart. Their results are published at 18:00 hours on Oct 8 2014 in the journal Nature. Highly-detailed images produced using radio telescopes from across Europe and America have pinpointed the locations where a stellar explosion (called a nova), emitted gamma rays (extremely high energy radiation). The discovery revealed how the gamma-ray emissions are produced, something which mystified astronomers ...

Making sure antibiotics work as they should

2014-10-08
This news release is available in German. A team of ETH Zurich researchers led by professors Nenad Ban and Ruedi Aebersold have studied the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms. However, higher organisms (eukaryotes), which include fungi, plants, animals and humans, contain much more complex ribosomes than bacteria. In eukaryotes, ribosomes can also be divided into two types: those in the cytosol – which comprises the majority of the cell – and ...

Conspicuous tRNA lookalikes riddle the human genome

2014-10-08
(PHILADELPHIA) – Transfer RNAs (tRNAs) are ancient workhorse molecules and part of the cellular process that creates the proteins, critical building blocks of life that keep a cell running smoothly. A new discovery suggests that the number of human genomic loci that might be coding for tRNAs is nearly double what is currently known. Most of the newly identified loci resemble the sequences of mitochondrial tRNAs suggesting unexpected new links between the human nuclear and mitochondrial genomes, links that are not currently understood. Transfer RNAs (tRNAs) represent ...

Rivers recover natural conditions quickly following dam removal

Rivers recover natural conditions quickly following dam removal
2014-10-08
CORVALLIS, Ore. – A study of the removal of two dams in Oregon suggests that rivers can return surprisingly fast to a condition close to their natural state, both physically and biologically, and that the biological recovery might outpace the physical recovery. The analysis, published by researchers from Oregon State University in the journal PLOS One, examined portions of two rivers – the Calapooia River and Rogue River. It illustrated how rapidly rivers can recover, both from the long-term impact of the dam and from the short-term impact of releasing stored ...

EARTH Magazine: How the Spanish Invasion altered the Peruvian Coast

2014-10-08
Alexandria, Va. — When Francisco Pizarro landed in Peru in 1532, his band of Spanish conquistadors set off a chain of far-reaching consequences for the people and economics of western South America. The Chira Beach-Ridge Plain in northwestern Peru is rippled by a set of nine ridges — several meters tall by up to 300 meters wide and 40 kilometers long, and large enough to be visible from space — running parallel to the shoreline. The pattern, observed along at least five other Peruvian beaches, was thought to have formed naturally over the past 5,000 years. ...

Insomnia among older adults may be tied to sleep quality, not duration

2014-10-08
Reports of insomnia are common among the elderly, but a new study finds that sleep problems may stem from the quality of rest and other health concerns more than the overall amount of sleep that patients get. An estimated 30 percent of adults report having some symptoms of insomnia, which includes difficulty falling asleep, staying asleep or waking up too early and then not feeling well rested during the daytime. Prior studies suggest that nearly half of older adults report at least one insomnia symptom and that lack of restorative sleep might be linked to heart disease, ...

Wildlife refuge plans show strengths and weaknesses for adaptation to climate change

2014-10-08
As the effects of a changing climate become acute, organizations charged with overseeing refuge areas must take action to adapt. The US Fish and Wildlife Service (USFWS) maintains the National Wildlife Refuge System, which constitutes world's largest system of protected lands and waters. According to a November BioScience article by Robert Fischman and Vicky Meretsky of Indiana University and their coauthors, the service may not always be adequately planning for an altered future, but best practices from several plans point the way for improvement. For instance, existing ...

New weapons against multidrug resistance in tuberculosis

2014-10-08
Using a high-throughput screening assay, EPFL scientists have discovered two small molecules that could overcome the multidrug resistance of the bacterium that causes tuberculosis. Tuberculosis is an infectious disease caused by a bacterium called Mycobacterium tuberculosis (Mtb), which commonly infects the lungs. In 2012, the World Health Organization estimated that tuberculosis affected 8.6 million people worldwide, causing death in 1.4 million. However, the fight against the disease is hampered by the fact that treatment requires a long time and that Mtb often develops ...

Nursing home infection rates on the rise, study finds

Nursing home infection rates on the rise, study finds
2014-10-08
(NEW YORK, NY, Oct. 8, 2014) – Nursing home infection rates are on the rise, a study from Columbia University School of Nursing found, suggesting that more must be done to protect residents of these facilities from preventable complications. The study, which examined infections in U.S. nursing homes over a five-year period, found increased infection rates for pneumonia, urinary tract infections (UTIs), viral hepatitis, septicemia, wound infections, and multiple drug-resistant organisms (MDROs). "Infections are a leading cause of deaths and complications for nursing ...

LAST 30 PRESS RELEASES:

Rare pterosaur fossil reveals crocodilian bite 76m years ago

Thousands of European citizen scientists helped identify shifts in the floral traits of insect-pollinated plants

By the numbers: Diarylethene crystal orientation controlled for 1st time

HKU physicists pioneer entanglement microscopy algorithm to explore how matter entangles in quantum many-body systems

Solving the evolutionary puzzle of polyploidy: how genome duplication shapes adaptation

Smoking opioids is associated with lower mortality than injecting but is still high-risk

WPIA: Accelerating DNN warm-up in web browsers by precompiling WebGL programs

First evidence of olaparib maintenance therapy in patients with newly diagnosed homologous recombination deficient positive/BRCA wild-type ovarian cancer: real-world multicenter study

Camel milk udderly good alterative to traditional dairy

New, embodied AI reveals how robots and toddlers learn to understand

Game, set, match: Exploring the experiences of women coaches in tennis

Significant rise in mental health admissions for young people in last decade

Prehab shows promise in improving health, reducing complications after surgery

Exercise and improved diet before surgery linked to fewer complications and enhanced recovery

SGLT-2 drug plus moderate calorie restriction achieves higher diabetes remission

Could the Summerville ghost lantern be an earthquake light?

Will the U.S. have enough pain specialists?

Stronger stress response in monkeys helps them survive

Using infrared heat transfer to modify chemical reactions

Being a ladies' man comes at a price for alpha male baboons

Study shows anti-clotting drug reduced bleeding events in patients with atrial fibrillation

UMaine-led team develops more holistic way to monitor lobster industry

Antiviral protein causes genetic changes implicated in Huntington’s disease progression

SwRI-led PUNCH spacecraft make final pit stop before launch

Claims for the world’s deepest earthquake challenged by new analysis

MSU study finds children of color experience more variability in sleep times

Pregnancy may increase risk of mental illness in people with MS

Multiple sclerosis linked to higher risk of mental illness during and after pregnancy

Beyond ChatGPT: WVU researchers to study use and ethics of artificial intelligence across disciplines

Ultrasensitive test detects, serially monitors intact virus levels in patients with COVID-19

[Press-News.org] Researchers watch, in real time, the dynamic motion of HIV as it readies an attack
Studies in both science and nature provide key insights into the biology of the virus