PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Of mice, not men

Catalog of mouse functional genome pinpoints similarities -- and some significant differences

2014-11-19
(Press-News.org) For more than a century, the laboratory mouse (Mus musculus) has stood in for humans in experiments ranging from deciphering disease and brain function to explaining social behaviors and the nature of obesity. The small rodent has proven to be an indispensable biological tool, the basis for decades of profound scientific discovery and medical progress.

But in new findings published online Nov. 19 in the journal Nature, researchers at the University of California, San Diego School of Medicine and Ludwig Cancer Research, with colleagues across the country and world, have discovered that a significant number of mouse genes do not in fact behave like their human counterparts, suggesting science will need to rethink at least some roles of the lab mouse as a model organism.

"The assumption has long been that whatever was discovered in the mouse would likely be true in humans too, but the idea has never been systematically evaluated and assessed," said Bing Ren, PhD, professor in the Department of Cellular and Molecular Medicine, head of the Laboratory of Gene Regulation at the Ludwig Institute for Cancer Research at UC San Diego and one of the paper's senior authors.

"We know now that this assumption is not entirely true. There are a substantial number of mouse genes that are regulated in ways different from similar genes in humans. The differences are not random. They are clustered along certain pathways, such as in genes regulating the immune system."

The findings, part of a series of related papers being published together in Nature, Science, and Genome Research, derive from the ongoing mouse ENCODE (Encyclopedia of DNA Elements) project, a multi-institution effort launched in 2007 to build a comprehensive parts list of functional elements of the mouse genome. It complements the earlier human ENCODE project, which published its functional catalogue in 2012.

"Both the original human and mouse genome projects gave us the sequence of genetic letters (adenine, thymine, guanine and cytosine) that comprise each organism, but no idea how they worked or worked together to create and sustain life," said Ren. "The human ENCODE project was designed to answer some of those questions. The mouse ENCODE project is its complement. It's intended to provide scientists with comprehensive annotation of what mouse genes do; information that may ultimately be used for human therapeutic purposes."

The mouse is not our closest genetic cousin, of course. Only half of human genomic DNA aligns to mouse genomic DNA. Chimpanzees, by comparison, match 96 percent. But protein-coding genes, which provide the actionable instructions to build a living organism, are more strongly conserved across the two species. Mice and humans share approximately 70 percent of the same protein-coding gene sequences, though these genes constitute just 1.5 percent of their respective genomes.

Ren said scientists had assumed that significant conservation would occur at the deeper level of gene regulation as well, that similar genes in humans and mice would be expressed in similar ways. Using the same high throughput technologies applied in the human ENCODE project, they analyzed 100 different mouse cell types and tissues. To their surprise, they found that while much conservation did exist, the expression profiles of some distinct biological pathways in mouse samples diverged considerably from human samples.

Put another way, core genomic programs were largely conserved between the species, but genes and their underlying regulatory programs had changed significantly over time. Each species had evolved to find different ways to do some of the same things.

The findings are not entirely unexpected. Ren said previous studies had documented rapidly evolving transcription factors in a handful of cell types and model organisms, but the ability to more systematically discern how humans and mice differ in genomic function marks an important milestone.

"One benefit is that while mice have proved to be substantially different than humans in some ways, we now have a better idea of where exactly they are different, where we will need to take into account those differences, perhaps finding or developing a better model, and where the mouse continues to be a very good model indeed."

INFORMATION:

There are 136 cited co-authors of this paper. The seven listed corresponding authors are Bing Ren, UC San Diego; Michael A. Beer, Johns Hopkins University; Ross C. Hardison, Pennsylvania State University; David M. Gilbert, Florida State University; Thomas R. Gingeras, Cold Spring Harbor Laboratory, New York; Roderic Guigo, Center for Genomic Regulation, Catalonia, Spain; Michael P. Snyder, Stanford University; and John Stamatoyannopoulos, University of Washington.

Funding for this research came, in part, from the National Institutes of Health (grants R01HG003991, 1U54HG007004, 3RC2HG005602, GM083337, GM085354, F31CA165863, RC2HG005573, R01DK065806 and R01HD043997-09), the Spanish Plan Nacional, the National Science Foundation Graduate Research Fellowship, the Wellcome Trust, the National Human Genome Research Institute (grant U01HG004695) and the European Molecular Biology Laboratory.



ELSE PRESS RELEASES FROM THIS DATE:

New understanding of genetic replication could help in the fight against cancer

2014-11-19
TALLAHASSEE, Fla. -- A new line of research from a team at Florida State University is pushing the limits on what the world knows about how human genetic material is replicated and what that means for people with diseases where the replication process is disrupted, such as cancer. The team, lead by Department of Biological Sciences Professor David Gilbert and post-doctoral researcher Ben Pope, has taken an in-depth look at how DNA and the associated genetic material replicate and organize within a cell's nucleus. Their work could be especially crucial for doctors and ...

Crops help to drive greater seasonal change in CO2 cycle

2014-11-19
BOSTON - November 19, 2014 - Each year in the Northern Hemisphere, levels of atmospheric carbon dioxide (CO2) drop in the summer as plants inhale, and then climb again as they exhale and decompose after their growing season. Over the past 50 years, the size of this seasonal swing has increased by as much as half, for reasons that aren't fully understood. Now a team of researchers led by Boston University scientists has shown that agricultural production may generate up to a quarter of the increase in this seasonal carbon cycle, with corn playing a leading role. "In the ...

What agricultural 'ecosystems on steroids' are doing to the air

2014-11-19
ANN ARBOR--In a study that identifies a new, "direct fingerprint" of human activity on Earth, scientists have found that agricultural crops play a big role in seasonal swings of carbon dioxide in the atmosphere. The new findings from Boston University, the University of Michigan and other institutions reveal a nuance in the carbon cycle that could help scientists understand and predict how Earth's vegetation will react as the globe warms. Agriculture amplifies carbon dioxide fluctuations that happen every year. Plants suck up CO2 in the spring and summer as they blossom. ...

Thin film produces new chemistry in 'nanoreactor'

Thin film produces new chemistry in nanoreactor
2014-11-19
Physicists at the University of Groningen led by Professor of Functional Nanomaterials Beatriz Noheda have discovered a new manganese compound that is produced by tension in the crystal structure of terbium manganese oxide. The technique they used to create this new material could open the way to new nanoscale circuits. Their findings were published on 20 November 2014 in the journal Nature. The researchers grew a very thin layer (no more than a few dozen atoms thick) of the terbium manganese oxide crystal on a thicker base layer of strontium titanium oxide. This base ...

Business culture in banking industry favors dishonest behavior

2014-11-19
In the past years, there have often been cases of fraud in the banking industry, which have led to a considerable loss of image for banks. Are bank employees by nature less honest people? Or does the business culture in the banking sector favor dishonest behavior? These questions formed the basis for a new study by Alain Cohn, Ernst Fehr, and Michel Maréchal from the Department of Economics at the University of Zurich. Their results show that bank employees are in principle not more dishonest than their colleagues in other industries. The findings indicate, however, ...

New view of mouse genome finds many similarities, striking differences with human genome

2014-11-19
Looking across evolutionary time and the genomic landscapes of humans and mice, an international group of researchers has found powerful clues to why certain processes and systems in the mouse - such as the immune system, metabolism and stress response - are so different from those in people. Building on years of mouse and gene regulation studies, they have developed a resource that can help scientists better understand how similarities and differences between mice and humans are written in their genomes. Their findings - reported by the mouse ENCODE Consortium online ...

Variation in expression of thousands of genes kept under tight constraint in mice, humans

2014-11-19
Cold Spring Harbor, NY - An international team of researchers led by Professor Thomas R. Gingeras of Cold Spring Harbor Laboratory (CSHL) and Roderic Guigo (Centre For Genomic Regulation, Barcelona) has identified some 6600 genes whose level of expression varies within a comparatively restricted range in humans and mice. This constraint in expression, they found, is unrelated to the degree of similarity of their gene sequences. The 6600 genes represent about one-third of the total set of genes that are typically active in cells across tissues in both species, irrespective ...

Humans and mice: So similar but yet so different

Humans and mice: So similar but yet so different
2014-11-19
This news release is available in Spanish. A group of international researchers has just discovered the keys to explaining why certain processes and systems in mice, like the immune system, metabolism and stress response, are so different to those in humans. The scientists have detailed the functional parts of the mouse genome and have compared them with those in humans. A whole set of data has come out of this - which is now to available to the scientific community - which will be significant for research into mammalian biology as well as the study of human illness ...

Experts suggest single dose IV medication as first-choice treatment for Paget's disease

2014-11-19
Washington, DC--The Endocrine Society today issued a Clinical Practice Guideline (CPG) for the diagnosis and treatment of Paget's disease of the bone, a condition where one or more bones in the body become oversized and weak. The CPG, entitled "Paget's Disease of Bone: An Endocrine Society Clinical Practice Guideline," will appear in the December 2014 issue of the Journal of Clinical Endocrinology and Metabolism (JCEM), a publication of the Endocrine Society. As part of its normal processes, the body breaks down old bone tissue and replaces it with new bone. When someone ...

Successful outcome prompts early end to sickle cell anemia clinical trial

2014-11-19
CINCINNATI - Conclusive data show that hydroxyurea therapy offers safe and effective disease management of sickle cell anemia (SCA) and reduces the risk of stroke, prompting early termination by the National Heart Lung and Blood Institute (NHLBI) of a key clinical trial studying the drug's efficacy. NHLBI officials issued the announcement today, about one year before the study was originally scheduled to end. Going by the title TWiTCH (TCD With Transfusions Changing to Hydroxyurea), the Phase III randomized clinical trial at 25 medical centers in the U.S. and Canada compared ...

LAST 30 PRESS RELEASES:

NASA’s Parker Solar Probe makes history with closest pass to Sun

Are we ready for the ethical challenges of AI and robots?

Nanotechnology: Light enables an "impossibile" molecular fit

Estimated vaccine effectiveness for pediatric patients with severe influenza

Changes to the US preventive services task force screening guidelines and incidence of breast cancer

Urgent action needed to protect the Parma wallaby

Societal inequality linked to reduced brain health in aging and dementia

Singles differ in personality traits and life satisfaction compared to partnered people

President Biden signs bipartisan HEARTS Act into law

Advanced DNA storage: Cheng Zhang and Long Qian’s team introduce epi-bit method in Nature

New hope for male infertility: PKU researchers discover key mechanism in Klinefelter syndrome

Room-temperature non-volatile optical manipulation of polar order in a charge density wave

Coupled decline in ocean pH and carbonate saturation during the Palaeocene–Eocene Thermal Maximum

Unlocking the Future of Superconductors in non-van-der Waals 2D Polymers

Starlight to sight: Breakthrough in short-wave infrared detection

Land use changes and China’s carbon sequestration potential

PKU scientists reveals phenological divergence between plants and animals under climate change

Aerobic exercise and weight loss in adults

Persistent short sleep duration from pregnancy to 2 to 7 years after delivery and metabolic health

Kidney function decline after COVID-19 infection

Investigation uncovers poor quality of dental coverage under Medicare Advantage

Cooking sulfur-containing vegetables can promote the formation of trans-fatty acids

How do monkeys recognize snakes so fast?

Revolutionizing stent surgery for cardiovascular diseases with laser patterning technology

Fish-friendly dentistry: New method makes oral research non-lethal

Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)

A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets

New scan method unveils lung function secrets

Searching for hidden medieval stories from the island of the Sagas

Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model

[Press-News.org] Of mice, not men
Catalog of mouse functional genome pinpoints similarities -- and some significant differences