(Press-News.org) Scientists developed a new method which allows to estimate the magnetic field of a distant exoplanet, i.e., a planet, which is located outside the Solar system and orbits a different star. Moreover, they managed to estimate the value of the magnetic moment of the planet HD 209458b.The group of scientists including one of the researchers of the Lomonosov Moscow State University (Russia) published their article in the Science magazine.
In the two decades which passed since the discovery of the first planet outside the Solar system, astronomers have made a great progress in the study of these objects. While 20 years ago a big event was even the discovery of a new planet, nowadays astronomers are able to consider their moons, atmosphere and climate and other characteristics similar to the ones of the planets in the Solar system. One of the important properties of both solid and gaseous planets is their possible magnetic field and its magnitude. On the Earth it protects all the living creatures from the dangerous cosmic rays and helps animals to navigate in space.
Kristina Kislyakova of the Space Research Institute of the Austrian Academy of Sciences in Graz together with an international group of physicists for the first time ever was able to estimate the value of the magnetic moment and the shape of the magnetosphere of the exoplanet HD 209458b. Maxim Khodachenko, a researcher at the Department of Radiation and computational methods of the Skobeltsyn Institute of Nuclear Physics of the Lomonosov Moscow State University, is also one of the authors of the article. He also works at the Space Research Institute of the Austrian Academy of Sciences.
Planet HD 209458b (Osiris) is a hot Jupiter, approximately one third larger and lighter than Jupiter. It is a hot gaseous giant orbiting very close to the host star HD 209458. HD 209458b accomplishes one revolution around the host star for only 3.5 Earth days. It has been known to astronomers for a long time and is relatively well studied. In particular, it is the first planet where the atmosphere was detected. Therefore, for many scientists it has become a model object for the development of their hypotheses.
Scientists used the observations of the Hubble Space Telescope of the HD 209458b in the hydrogen Lyman-alpha line at the time of transit, when the planet crosses the stellar disc as seen from the Earth. At first, the scientists studied the absorption of the star radiation by the atmosphere of the planet. Afterwards they were able to estimate the shape of the gas cloud surrounding the hot Jupiter, and, based on these results, the size and the configuration of the magnetosphere.
"We modeled the formation of the cloud of hot hydrogen around the planet and showed that only one configuration, which corresponds to specific values of the magnetic moment and the parameters of the stellar wind, allowed us to reproduce the observations" - explained Kristina Kislyakova.
To make the model more accurate, scientists accounted for many factors that define the interaction between the stellar wind and the atmosphere of the planet: so-called charge exchange between the stellar wind and the neutral atmospheric particles and their ionization, gravitational effects, pressure, radiation acceleration, and the spectral line broadening.
At present, scientists believe that the size of the atomic hydrogen envelope is defined by the interaction between the gas outflows from the planet and the incoming stellar wind protons. Similarly to the Earth, the interaction of the atmosphere with the stellar wind occurs above the magnetosphere. By knowing the parameters of an atomic hydrogen cloud, one can estimate the size of the magnetosphere by means of a specific model.
Since direct measurements of the magnetic field of exoplanets are currently impossible, the indirect methods are broadly used, for example, using the radio observations. There exist a number of attempts to detect the radio emission from the planet HD 209458b. However, because of the large distances the attempts to detect the radio emission from exoplanets have yet been unsuccessful.
"The planet's magnetosphere was relatively small beeing only 2.9 planetary radii corresponding to a magnetic moment of only 10% of the magnetic moment of Jupiter" -- explained Kislyakova, a graduate of the Lobachevsky State University of Nizhny Novgorod. According to her, it is consistent with the estimates of the effectiveness of the planetary dynamo for this planet.
"This method can be used for every planet, including Earth-like planets, if there exist an extended high energetic hydrogen envelope around them" - summarized Maxim Khodachenko.
INFORMATION:
MADISON, Wis. -- As real as that daydream may seem, its path through your brain runs opposite reality.
Aiming to discern discrete neural circuits, researchers at the University of Wisconsin-Madison have tracked electrical activity in the brains of people who alternately imagined scenes or watched videos.
"A really important problem in brain research is understanding how different parts of the brain are functionally connected. What areas are interacting? What is the direction of communication?" says Barry Van Veen, a UW-Madison professor of electrical and computer engineering. ...
MADISON, Wis. - The influenza virus, like all viruses, is a hijacker. It quietly slips its way inside cells, steals the machinery inside to make more copies of itself, and then -- having multiplied -- bursts out of the cell to find others to infect.
Most drugs currently used to treat influenza are designed to attack the virus, to render it incapacitated. But influenza viruses are sneaky, capable of mutating to avoid destruction by the drug.
In a comprehensive new study published today in the journal Cell Host and Microbe, the University of Wisconsin-Madison's Yoshihiro ...
EUGENE, Ore. -- Nov. 20, 2014 -- A potential path to identify imperfections and improve the quality of nanomaterials for use in next-generation solar cells has emerged from a collaboration of University of Oregon and industry researchers.
To increase light-harvesting efficiency of solar cells beyond silicon's limit of about 29 percent, manufacturers have used layers of chemically synthesized semiconductor nanocrystals. Properties of quantum dots that are produced are manipulated by controlling the synthetic process and surface chemical structure.
This process, however, ...
CHAMPAIGN, Ill. -- The majority of preschoolers may not be getting the amount of sleep they need each night, placing them at higher risk of being overweight or obese within a year, according to a new study.
Published online by the journal Sleep Medicine, the study investigated links between mothers' employment status and their children's weight over time, exploring the impact of potential mediators, such as children's sleep and dietary habits, the amount of time they spent watching TV and family mealtime routines.
"The only factor of the four that we investigated that ...
Washington, DC--Levels of testosterone and other naturally-occurring reproductive hormones play a limited role in driving menopausal women's interest in sex and sexual function, according to a new study published in the Endocrine Society's Journal of Clinical Endocrinology & Metabolism.
While testosterone is the main sex hormone in men, women also have small amounts of it. The ovaries naturally produce testosterone. Researchers set out to examine the role the hormone plays in sexual function as women go through menopause.
"While levels of testosterone and other reproductive ...
Washington, DC--As many as one in five people with Type 2 diabetes do not see any improvement in blood sugar management when they engage in a supervised exercise regimen, according to a new scientific review published in the Endocrine Society's Journal of Clinical Endocrinology & Metabolism.
People develop Type 2 diabetes when their bodies become resistant to the hormone insulin, which carries sugar from the blood to cells. This leads to excess sugar in the bloodstream. The U.S. Centers for Disease Control and Prevention projects about 40 percent of Americans will develop ...
Enzymes carry out fundamental biological processes such as photosynthesis, nitrogen fixation and respiration, with the help of clusters of metal atoms as "active" sites. But scientists lack basic information about their function because the states thought to be critical to their chemical abilities cannot be experimentally observed.
Now, researchers at Princeton University have reported the first direct observation of the electronic states of iron-sulfur clusters, common to many enzyme active sites. Published on August 31 in the journal Nature Chemistry, the states were ...
LIVERMORE, California -- Using ocean observations and a large suite of climate models, Lawrence Livermore National Laboratory scientists have found that long-term salinity changes have a stronger influence on regional sea level changes than previously thought.
"By using long-term observed estimates of ocean salinity and temperature changes across the globe, and contrasting these with model simulations, we have uncovered the unexpectedly large influence of salinity changes on ocean basin-scale sea level patterns," said LLNL oceanographer Paul Durack, lead author of a paper ...
BANGALORE, INDIA (November 20, 2014) - Participation of non-scientists as volunteers in conservation can play a significant role in saving wildlife, finds a new scientific research led by Duke University, USA, in collaboration with Wildlife Conservation Society and Centre for Wildlife Studies, Bengaluru.
The study has shown that citizen science projects greatly contribute to 'increased environmental awareness among the general public'. It also reported direct impacts on conservation including - shift in formal profession by volunteers to become conservationists, initiation ...
Moderate rainfall was occurring around the center of Tropical Storm Adjali before it dissipated, according to data from NASA and the Japan Aerospace Exploration Agency's Global Precipitation Measurement or GPM satellites.
Adjali became the first named storm of the Southwest Indian Ocean 2014/2015 cyclone season when it formed on November 16, 2014. Adjali became a strong tropical storm the next day and just two days later started to dissipate.
The GPM observatory captured data on Adjali's rainfall rates on Nov. 18. GPM's Microwave Imager (GMI) instrument is similar to ...