PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Asteroid impacts on Earth make structurally bizarre diamonds

Asteroid impacts on Earth make structurally bizarre diamonds
2014-11-24
(Press-News.org) Scientists have argued for half a century about the existence of a form of diamond called lonsdaleite, which is associated with impacts by meteorites and asteroids. A group of scientists based mostly at Arizona State University now show that what has been called lonsdaleite is in fact a structurally disordered form of ordinary diamond.

The scientists' report is published in Nature Communications, Nov. 20, by Péter Németh, a former ASU visiting researcher (now with the Research Centre of Natural Sciences of the Hungarian Academy of Sciences), together with ASU's Laurence Garvie, Toshihiro Aoki and Peter Buseck, plus Natalia Dubrovinskaia and Leonid Dubrovinsky from the University of Bayreuth in Germany. Buseck and Garvie are with ASU's School of Earth and Space Exploration, while Aoki is with ASU's LeRoy Eyring Center for Solid State Science.

"So-called lonsdaleite is actually the long-familiar cubic form of diamond, but it's full of defects," says Péter Németh. These can occur, he explains, due to shock metamorphism, plastic deformation or unequilibrated crystal growth.

The lonsdaleite story began almost 50 years ago. Scientists reported that a large meteorite, called Canyon Diablo after the crater it formed on impact in northern Arizona, contained a new form of diamond with a hexagonal structure. They described it as an impact-related mineral and called it lonsdaleite, after Dame Kathleen Lonsdale, a famous crystallographer.

Since then, "lonsdaleite" has been widely used by scientists as an indicator of ancient asteroidal impacts on Earth, including those linked to mass extinctions. In addition, it has been thought to have mechanical properties superior to ordinary diamond, giving it high potential industrial significance. All this focused much interest on the mineral, although pure crystals of it, even tiny ones, have never been found or synthesized. That posed a long-standing puzzle.

The ASU scientists approached the question by re-examining Canyon Diablo diamonds and investigating laboratory samples prepared under conditions in which lonsdaleite has been reported.

Using the advanced electron microscopes in ASU's Center for Solid State Science, the team discovered, both in the Canyon Diablo and the synthetic samples, new types of diamond twins and nanometer-scale structural complexity. These give rise to features attributed to lonsdaleite.

"Most crystals have regular repeating structures, much like the bricks in a well-built wall," says Peter Buseck. However, interruptions can occur in the regularity, and these are called defects. "Defects are intermixed with the normal diamond structure, just as if the wall had an occasional half-brick or longer brick or row of bricks that's slightly displaced to one side or another."

The outcome of the new work is that so-called lonsdaleite is the same as the regular cubic form of diamond, but it has been subjected to shock or pressure that caused defects within the crystal structure.

One consequence of the new work is that many scientific studies based on the presumption that lonsdaleite is a separate type of diamond need to be re-examined. The study implies that both shock and static compression can produce an intensely defective diamond structure.

The new discovery also suggests that the observed structural complexity of the Canyon Diablo diamond results in interesting mechanical properties. It could be a candidate for a product with exceptional hardness.

INFORMATION:

The School of Earth and Space Exploration is an academic unit of ASU's College of Liberal Arts and Sciences.


[Attachments] See images for this press release:
Asteroid impacts on Earth make structurally bizarre diamonds Asteroid impacts on Earth make structurally bizarre diamonds 2

ELSE PRESS RELEASES FROM THIS DATE:

Lionfish analysis reveals most vulnerable prey as invasion continues

Lionfish analysis reveals most vulnerable prey as invasion continues
2014-11-24
CORVALLIS, Ore. - If you live in lionfish territory in the Atlantic Ocean, the last thing you want to be is a small fish with a long, skinny body, resting by yourself at night, near the bottom of the seafloor. If so, your chances of being gobbled up by a lionfish increase by about 200 times. Findings of a study on lionfish predation behavior, which may also apply to some other fish and animal species, have shed some new light on which types of fish are most likely to face attack by this invasive predator, which has disrupted ecosystems in much of the Caribbean Sea and ...

Preconception care for diabetic women could potentially save $5.5 billion

2014-11-24
Philadelphia, PA, November 24, 2014 - Pregnant women with diabetes are at an increased risk for many adverse birth outcomes. Preconception care (PCC) can significantly lower these risks by helping pregnant mothers with diabetes control their glucose levels, resulting in healthier babies and less money spent on complicated deliveries and lifelong medical complications. Effective, universal PCC for diabetic mothers could avert an estimated $5.5 billion in health expenditures and lost employment productivity over affected children's lifetimes, according to a new study published ...

Ultra-short X-ray pulses explore the nano world

Ultra-short X-ray pulses explore the nano world
2014-11-24
This news release is available in German. X-ray flashes are a unique scientific tool. They are generated by accelerating electrons to very high energy levels in kilometer-long vacuum tubes, so-called linear accelerators, and then deflecting them with specially arranged magnets. In the process the particles emit X-ray radiation that is amplified until an ultra-short and intensive X-ray flash is released. Researchers use these X-ray flashes to resolve structures as small as one ten billionth of a meter (0.1 nanometer) in size. That is roughly the diameter of a ...

Pain and itch in a dish

Pain and itch in a dish
2014-11-24
LA JOLLA, CA--November 24, 2014--A team led by scientists from The Scripps Research Institute (TSRI) has found a simple method to convert human skin cells into the specialized neurons that detect pain, itch, touch and other bodily sensations. These neurons are also affected by spinal cord injury and involved in Friedreich's ataxia, a devastating and currently incurable neurodegenerative disease that largely strikes children. The discovery allows this broad class of human neurons and their sensory mechanisms to be studied relatively easily in the laboratory. The "induced ...

Scientists identify bone cells that could help children who need corrective facial surgery

2014-11-24
ANN ARBOR--Our bones are smart. Bones know that by adolescence it's time to stop growing longer and stronger, and from that point on bones keep their shape by healing injuries. This question of why bones grow longer and stronger in children, but stay static in adults--yet retain the ability to heal themselves, has long perplexed scientists in the bone regeneration field. But researchers from the University of Michigan, Kyoto University and Harvard University believe they may have unearthed a big piece of this puzzle. The team discovered that a certain subset of cartilage-making ...

Drugs to block angiogenesis could provide new treatment for TB

Drugs to block angiogenesis could provide new treatment for TB
2014-11-24
VIDEO: When zebrafish are infected with bright blue Mycobacterium marinum, bright red immune cells quickly surround the bacteria to form tightly organized nuggets called granulomas (vessels green, bacteria blue, immune cells... Click here for more information. DURHAM, N.C. -- The body responds to tuberculosis infection by locking the bacterial offenders into tiny clusters of immune cells called granulomas, which are a hallmark of the disease. This containment strategy succeeds ...

Research reveals how our bodies keep unwelcome visitors out of cell nuclei

Research reveals how our bodies keep unwelcome visitors out of cell nuclei
2014-11-24
The structure of pores found in cell nuclei has been uncovered by a UCL-led team of scientists, revealing how they selectively block certain molecules from entering, protecting genetic material and normal cell functions. The discovery could lead to the development of new drugs against viruses that target the cell nucleus and new ways of delivering gene therapies, say the scientists behind the study. At the heart of every cell in our body is a cell nucleus, a dense structure that contains our DNA. For a cell to function normally, it needs to surround its nucleus with a ...

Underwater robot sheds new light on Antarctic sea ice

Underwater robot sheds new light on Antarctic sea ice
2014-11-24
The first detailed, high-resolution 3-D maps of Antarctic sea ice have been developed using an underwater robot. Scientists from the UK, USA and Australia say the new technology provides accurate ice thickness measurements from areas that were previously too difficult to access. The results, published this week in the journal Nature Geoscience (Monday 24 November 2014), step up the pace of research in the polar regions aimed at understanding the dramatic sea ice changes in the context of climate change. Scientists use a range of technologies and techniques to measure ...

New research discovers gene that reduces risk of stroke

2014-11-24
Scientists have discovered a gene that protects people against one of the major causes of stroke in young and middle-aged adults and could hold the key to new treatments. Researchers from Royal Holloway, University of London, together with an international team from across the United States and Europe, have found that people with a specific variant of a gene, known as PHACTR1, are at reduced risk of suffering cervical artery dissection, which is caused by a tear in an artery that leads to the brain. The new discovery, published in the journal Nature Genetics, could ...

Magnetic fields and lasers elicit graphene secret

Magnetic fields and lasers elicit graphene secret
2014-11-24
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of a seemingly paradoxical phenomenon in the material. Its understanding could make a new type of laser possible in the future. Together with researchers from Berlin, France, the Czech Republic and the United States, the scientists precisely described their observations in a model and have now published their findings in the scientific journal Nature Physics. Graphene ...

LAST 30 PRESS RELEASES:

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

Stress makes mice’s memories less specific

Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage

Resilience index needed to keep us within planet’s ‘safe operating space’

How stress is fundamentally changing our memories

Time in nature benefits children with mental health difficulties: study

In vitro model enables study of age-specific responses to COVID mRNA vaccines

Sitting too long can harm heart health, even for active people

International cancer organizations present collaborative work during oncology event in China

One or many? Exploring the population groups of the largest animal on Earth

ETRI-F&U Credit Information Co., Ltd., opens a new path for AI-based professional consultation

New evidence links gut microbiome to chronic disease outcomes

Family Heart Foundation appoints Dr. Seth Baum as Chairman of the Board of Directors

New route to ‘quantum spin liquid’ materials discovered for first time

Chang’e-6 basalts offer insights on lunar farside volcanism

Chang’e-6 lunar samples reveal 2.83-billion-year-old basalt with depleted mantle source

Zinc deficiency promotes Acinetobacter lung infection: study

How optogenetics can put the brakes on epilepsy seizures

Children exposed to antiseizure meds during pregnancy face neurodevelopmental risks, Drexel study finds

Adding immunotherapy to neoadjuvant chemoradiation may improve outcomes in esophageal cancer

Scientists transform blood into regenerative materials, paving the way for personalized, blood-based, 3D-printed implants

Maarja Öpik to take up the position of New Phytologist Editor-in-Chief from January 2025

Mountain lions coexist with outdoor recreationists by taking the night shift

Students who use dating apps take more risks with their sexual health

Breakthrough idea for CCU technology commercialization from 'carbon cycle of the earth'

[Press-News.org] Asteroid impacts on Earth make structurally bizarre diamonds