PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

The legend of the kamikaze typhoons

New Geology articles posted online Dec. 4, 2014

The legend of the kamikaze typhoons
2014-12-09
(Press-News.org) Boulder, Colo., USA - In the late 13th century, Kublai Khan, ruler of the Mongol Empire, launched one of the world's largest armada of its time in an attempt to conquer Japan. Early narratives describe the decimation and dispersal of these fleets by the "Kamikaze" of CE 1274 and CE 1281 -- a pair of intense typhoons divinely sent to protect Japan from invasion.

These historical accounts are prone to exaggeration, and significant questions remain regarding the occurrence and true intensity of these legendary typhoons. For independent insight, we provide a new 2,000 year sedimentary reconstruction of typhoon overwash from a coastal lake near the location of the Mongol invasions. Two prominent storm deposits date to the timing of the Kamikaze typhoons and support them being of significant intensity.

Our new storm reconstruction also indicates that events of this nature were more frequent in the region during the timing of the Mongol invasions. Results support the paired Kamikaze typhoons in having played an important role in preventing the early conquest of Japan by Mongol fleets. In doing so, the events may provide one of the earliest historical cases for the shaping of a major geopolitical boundary by an increased probability of extreme weather due to changing atmospheric and oceanic conditions.

FEATURED ARTICLE Depositional evidence for the Kamikaze typhoons and links to changes in typhoon climatology J.D. Woodruff et al., Dept. of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003, USA. Published online ahead of print on 4 Dec. 2014; http://dx.doi.org/10.1130/G36209.1.

Other recently posted GEOLOGY articles (see below) cover such topics as 1. Possible asbestos hazard in Mohave County, Arizona, USA; 2. Crust patterns in the Makgadikgadi Salt Pans, Botswana; and 3. The in-vitro "growth" of gold grains.

GEOLOGY articles published online ahead of print can be accessed online at http://geology.gsapubs.org/content/early/recent. All abstracts are open-access at http://geology.gsapubs.org/; representatives of the media may obtain complimentary articles by contacting Kea Giles at the address above.

Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to GEOLOGY in any articles published. Contact Kea Giles for additional information or assistance.

Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.

Genesis and health risk implications of an unusual occurrence of fibrous NaFe3+-amphibole Rodney V. Metcalf and Brenda J. Buck, Dept. of Geoscience, University of Nevada-Las Vegas, Las Vegas, Nevada 89154-4010, USA. Published online ahead of print on 4 Dec. 2014; http://dx.doi.org/10.1130/G36199.1.

As source of naturally occurring asbestos has been discovered associated with the 13.7-million-year-old Wilson Ridge pluton in Mohave County, Arizona, USA. The naturally occurring asbestos minerals are fibrous NaFe3+-amphibole, principally winchite and magnesioriebeckite, that are similar to those found to cause death and disease in Libby, Montana, USA. Potential human exposure pathways are from both natural wind erosion and anthropogenic disturbances that release fibers from soil into the air. These processes are enhanced by the arid climate of the region. Fibrous NaFe3+-amphibole sources include public lands with popular hiking and off-road vehicle trails that are in close proximity to population centers in the greater Las Vegas metropolitan area in southern Nevada. Because naturally occurring asbestos is often disseminated through geologic materials and may not be readily apparent in outcrop, an understanding of the geologic settings where naturally occurring asbestos may occur is critical to mitigating human health risk. The geologic setting and mechanism of formation of the NaFe3+-amphibole at Wilson Ridge is unusual and would not be predicted by current genetic models. This work suggests that fibrous NaFe3+-amphibole may be present in areas not previously considered at risk for naturally occurring asbestos.

The Li isotope response to mountain uplift Philip A.E. Pogge von Strandmann, Institute of Earth and Planetary Sciences, University College London and Birkbeck College, University of London, Gower Street, London WC1E 6BT, UK; and Gideon M. Henderson, Dept. of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. Published online ahead of print on 4 Dec. 2014; http://dx.doi.org/10.1130/G36162.1.

Chemical weathering of silicate rocks on the continents is the main natural removal mechanism of atmospheric CO2. It has been proposed that the uplift of the Himalayas over the past 40 million years increased weathering, removed CO2, and therefore caused the long-term decline in global temperatures that resulted in the presence of polar ice at the present. We have tested the relationship between mountain uplift and weathering, using South Island, New Zealand, as an example. We find that higher uplift promotes greater dissolution of rock, while areas of lower uplift, such as floodplains, promote clay formation. The formation of clays will inhibit the efficiency of CO2 withdrawal by storing cations in clays and soils. Hence, while the uplift of mountain belts likely enhances weathering and therefore CO2 removal from the atmosphere, the floodplains that form as a result decrease the efficiency of CO2 sequestration. Comparisons with records of weathering through time now suggest that rather than the Himalaya uplift directly influencing cooling, it was the floodplains that formed from the Himalayas that strongly changed climate and ocean chemistry over the past 40 million years.

The dynamism of salt crust patterns on playas Joanna M. Nield et al., Geography and Environment, University of Southampton, Southampton SO171BJ, UK. Published online ahead of print on 4 Dec. 2014; http://dx.doi.org/10.1130/G36175.1.

Playas (also known as dry lakes or salt pans) are commonly found in deserts and produce dust that can be transported by wind into the atmosphere and alter global climate conditions. However, crusts typically form on the surface of these "dry lakes," which reduce dust emission and evaporation rates, and until now we knew very little about the rate at which the crust changed its shape. This study of the Makgadikgadi Salt Pans in Botswana (a significant Southern Hemisphere dust source) is the first to measure crust patterns over weeks, months, and a year with millimeter accuracy. Typically after flooding, a new crust will be flat and continuous. Over time the crust becomes rough with polygonal ridges which eventually degrade forming a flatter dust rich surface. We find that the shapes of these surfaces change considerably (greater than 30 mm/week) and as patterns develop they can change measured aerodynamic roughness of the surface by as much as 3 mm/week. Aerodynamic roughness is important as this can change the wind speed at which the surface produces dust. The dynamic nature of these crusted surfaces must be accounted for in dust entrainment and moisture balance formulae to improve regional and global climate models.

Layered intrusions and traffic jams Paul D. Bons et al., Mineralogy and Geodynamics, Dept. of Geosciences, Eberhard Karls University Tübingen, Wilhelmstrasse 56, 72074 Tübingen, Germany, http:/dx.doi/org/10.1130/G36276.1.

Layered intrusions are igneous bodies with a rhythmic variation in mineral composition. The origin of this remarkable layering has been debated for decades. We propose that the layering forms the same way as traffic jams on motor ways when traffic gets dense: simultaneously sinking and floating crystals impede each other's movement, leading to "traffic jams" in the cooling magma chamber. The traffic jams of crystals form barriers that crystals formed later have difficulty to pass, which leads to the formation of layers throughout the whole magma chamber as it slowly cools. The process of layer formation by traffic jams was simulated in a numerical model, which made it possible to constrain the conditions where layering can form. If the melt is too liquid and the magma chamber cools too slowly, crystals all manage to sink to the bottom or float to the top of the chamber, and crystal traffic is never dense enough to form traffic jams. This was the case when the moon solidified and buoyant plagioclase crystals could all float to the surface to form the lunar crust.

Flood-flipped boulders: In-situ cosmogenic nuclide modeling of flood deposits in the monsoon tropics of Australia Toshiyuki Fujioka et al., Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia. Published online ahead of print on 4 Dec. 2014; http://dx.doi.org/10.1130/G35856.1.

Records of extreme climatic events (such as cyclones, floods) are generally limited to the last several thousand years, preventing our ability to correlate changes in paleo-hydrology with different climate states. In this paper, in situ cosmogenic nuclides are utilized to date meter-sized, massive flood-generated sandstone boulders in the Durack River, the Kimberley, northern Australia. A simple numerical model has been established to constrain the timing of the boulder's detachment from bedrock channel floor and overturning. The first application of the model successfully determined the early to mid-Holocene flood events (6000 to 10,000 years) as well as ages potentially dating back to the penultimate glacial ages ~250,000 years. Similar early to mid-Holocene major floods have been recorded in other parts of northern Australia, suggesting that such extreme events may have been widespread in the region during the late Quaternary. The present method has potential to extend the study of paleo-flood records to the past two glacial cycles, providing the opportunity to improve our predictions of extreme event frequency in the face of global warming. The model is also applicable to other deposits by extreme events such as paleo-tsunamis.

Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge Christine Andersen et al., GEOMAR, Helmholtz Centre for Ocean Research, Wischhofstrasse 1-3, 24148 Kiel, Germany. Published online ahead of print on 4 Dec. 2014; http://dx.doi.org/10.1130/G36113.1.

Hydrothermal hot springs at slow-spreading mid-ocean ridges that typically are tectonically dominated are apparently consistently linked to fractures and faults in the oceanic crust. While it seems intuitive that hot fluids use faults as preferential pathway, such efficient flow inevitably leads to extensive mixing with cold seawater. This temperature drop is difficult to reconcile with observed high-temperature black smoker activity and formation of associated massive sulfide ore deposits. In our study we have combined newly acquired micro earthquake data from the fault controlled, high-temperature Logatchev 1 hydrothermal field at the Mid-Atlantic Ridge with numerical modeling of hydrothermal flow to solve this apparent contradiction. In our simulations we find that high temperatures in fluids exiting at fault zones at the seafloor can only be reached when a fault zone is not too wide and not too permeable. Permeability and width must be sufficient to redirect hydrothermal fluids into the fault but low enough to prevent the entrainment of cold ambient seawater.

Goethite as a potential source of magnetic nanoparticles in sediments J.L. Till et al., Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités-UMPC, CNRS UMR 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France; and Institut de Physique du Globe de Paris (IPGP), Sorbonne Paris Cité, Université Paris Diderot, UMR 7154 CNRS, 1 rue Jussieu, 75005 Paris, France. Published online ahead of print on 4 Dec. 2014; http://dx.doi.org/G36186.1.

The oxyhydroxide mineral goethite is an Fe-rich phase commonly found in soils, dust, and sediments. Through a series of laboratory experiments, Till et al. show that the nanocrystalline form of this weakly magnetic mineral rapidly transforms to produce nanoparticles of the highly magnetic Fe-oxide mineral magnetite under reducing conditions via a dehydration and reduction reaction chain. Such reactions may be responsible for the significant increases in soil magnetic properties observed to occur after wildfires. The study also discovered that this alteration reaction can take place at relatively low temperatures, raising the possibility of dramatic changes in rock magnetic properties for goethite-bearing sediments during diagenesis and metamorphosis. The findings suggest that goethite is likely an overlooked source of magnetic nanoparticles in the environment and raises new questions about Fe-cycling and redox reactions in sedimentary systems.

The in-vitro "growth" of gold grains Jeremiah Shuster and Gordon Southam, School of Earth Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia. Published online ahead of print on 4 Dec. 2014; http://dx.doi.org/10.1130/G36241.1.

Gold cycling under near-surface conditions involve primary gold source weathering, secondary gold mineralization and aggregation. Shuster and Southam demonstrate that regeneration of the biosphere, the circle of life, has a profound influence on the biogeochemical cycling of gold. Natural microbiological processes promoting the formation of secondary gold particles were originally hypothesized over 80 years ago. These processes are now known to contribute to the formation of colloids, octahedral platelets, bacteriomorphic structures and foils from soluble gold complexes. Using a simplified laboratory model of a placer environment, sedimentation and physical compaction enhanced the aggregation of secondary gold particles that ultimately led to the formation of grains. These grains possessed smooth surface textures that were characteristic of natural gold grains and delicate nanometer- to micrometer-size secondary gold structures produced by bacteria. By dissolving and precipitating gold, these microorganisms were critical in gold grain formation and could help explain the formation of nuggets -- a structure 1,000,000 times larger than the original colloidal gold!

Lithologic control on the form of soil-mantled hillslopes Samuel A. Johnstone and George E. Hilley, Dept. of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA. Published online ahead of print on 4 Dec. 2014; http://dx.doi.org/10.1130/G36052.1.

For more than a century, scientists have studied soil transport and how these processes shape hillslopes that are covered by soil. Knowledge of soil transport is used to make predictions of landscape change, helping us assess the rates at which landscapes are being uplifted by tectonic activity and the timing of features associated with ancient earthquakes, among other things. On hillslopes covered by soil, we can't see rocks at the surface but we might expect rocks of differing strength to impact the evolution of hillslopes. However, most predictions for rates of soil transport across hillslopes decouple soil transport and hillslope forms from the rocks present in the subsurface. In this study we document a landscape in Central California where rocks are influencing the form of soil-mantled hillslopes. We note that many of the processes responsible for mobilizing soil act throughout the soil column, but are less active or inactive in deeper parts of a soil column. Based on this decay in transport with depth, we propose a new prediction for soil transport that can explain how rock type may influence rates of soil transport and ultimately landscape forms in certain settings.

Near-seafloor magnetics reveal tectonic rotation and deep structure at the TAG (Trans-Atlantic Geotraverse) hydrothermal site (Mid-Atlantic Ridge, 26°N) Florent Szitkar and Jérôme Dyment, Institut de Physique du Globe de Paris, CNRS UMR 7154, Sorbonne Paris Cité, Université Paris Diderot, 75005 Paris, France. Published online ahead of print on 4 Dec. 2014; http://dx.doi.org/10.1130/G36086.1.

The near-seafloor magnetic anomaly at the Trans-Atlantic Geotraverse hydrothermal site (Mid-Atlantic Ridge, 26 degrees N) is revisited taking advantage of geological constraints from Ocean Drilling Program drill holes and high-resolution bathymetry. The dipolar magnetic anomaly associated with the site is better reduced to the pole (i.e., corrected for the effects of non-vertical magnetization and ambient magnetic field vectors) if the magnetization vector is tilted by 34 degrees N, an observation suggesting that the strongly faulted basalt surrounding the site has been rotated by ~53 degrees along an axis parallel to the Mid-Atlantic Ridge as a probable consequence of the detachment tectonics inferred in this area. Magnetic modeling shows that the nonmagnetic stockwork zone (i.e. the deep part of the site made of mineralized veins in a matrix of altered basalt) is a significant contributor to the observed negative reduced-to-the-pole anomaly, the rest being accounted for by a deeper source probably related to thermal demagnetization of an ascending hydrothermal pipe beneath the active part of the site.

INFORMATION:

http://www.geosociety.org/

Contact: Kea Giles
+1-303-357-1057
kgiles@geosociety.org


[Attachments] See images for this press release:
The legend of the kamikaze typhoons

ELSE PRESS RELEASES FROM THIS DATE:

Conservation targeting tigers pushes leopards to change

Conservation targeting tigers pushes leopards to change
2014-12-09
A leopard may not be able to change its spots, but new research from a World Heritage site in Nepal indicates that leopards do change their activity patterns in response to tigers and humans--but in different ways. The study is the first of its kind to look at how leopards respond to the presence of both tigers and humansLeopard in Chitwan, Nepal simultaneously. Its findings suggest that leopards in and around Nepal's Chitwan National Park avoid tigers by seeking out different locations to live and hunt. Since tigers--the socially dominant feline--prefer areas less disturbed ...

Why treating shoulder pain in baseball pitchers is so difficult

2014-12-09
MAYWOOD, Ill. -- Results of treating shoulder pain in baseball pitchers and other throwing athletes are not as predictable as doctors, patients and coaches would like to think, according to a report in the journal Physical Medicine and Rehabilitation Clinics of North America. Nickolas Garbis, MD, an orthopedic surgeon who specializes in shoulder and elbow injuries at Loyola University Medical Center, is the primary author. Shoulder pain occurs in athletes who play sports that require rapid acceleration and deceleration of the throwing arm. They include baseball pitchers, ...

James Ingle of Mayo Clinic Recognized for Breast Cancer Research

2014-12-09
James Ingle, M.D., an internationally recognized breast cancer expert, will receive the 2014 William L. McGuire Memorial Lecture Award on Dec. 10 at the 2014 San Antonio Breast Cancer Symposium. Dr. Ingle is a professor of oncology and the Foust Professor in the Mayo Clinic College of Medicine in Rochester, Minnesota. He has been the leader of breast cancer research at the Mayo Clinic Cancer Center, serving as program co-leader of the women's cancer program with responsibility for breast cancer. He is currently co-director of the Mayo Clinic Breast Cancer Specialized ...

Mobile device use leads to few interactions between mother and child during mealtime

2014-12-09
(Boston)-- Moms who use mobile devices while eating with their young children are less likely to have verbal, nonverbal and encouraging interactions with them. The findings, which appear online in Academic Pediatrics, may have important implications about how parents balance attention between their devices with their children during daily life. Parent-child interactions during meal time in particular show a protective effect on child health outcomes such as obesity, asthma and adolescent risk behaviors. These findings have been attributed to the positive family communication ...

Wetlands more vulnerable to invasives as climate changes

2014-12-09
DURHAM, N.C. -- In the battle between native and invasive wetland plants, a new Duke University study finds climate change may tip the scales in favor of the invaders -- but it's going to be more a war of attrition than a frontal assault. "Changing surface-water temperatures, rainfall patterns and river flows will likely give Japanese knotweed, hydrilla, honeysuckle, privet and other noxious invasive species an edge over less adaptable native species," said Neal E. Flanagan, visiting assistant professor at the Duke Wetland Center, who led the research. Increased human ...

Corporate responsibility eases customer reactions to bad service

2014-12-09
PULLMAN, Wash. - Imagine standing in a long line at your favorite coffee shop only to receive the wrong order. What would you do? While some might be angry and tell all their friends about the shop's bad service, researchers say other customers may think "it's all good" - IF they learn that the coffee shop donates a percentage of every purchase to charitable causes that customers value. Corporate social responsibility maximizes consumer return Writing in the Journal of Public Policy and Marketing, researchers help firms understand when and why corporate social responsibility ...

Possible genetic link found in treatment-related cognitive issues in children w/ leukemia

Possible genetic link found in treatment-related cognitive issues in children w/ leukemia
2014-12-09
SAN FRANCISCO (DECEMBER 9, 2014) -Common variations in four genes related to brain inflammation or cells' response to damage from oxidation may contribute to the problems with memory, learning and other cognitive functions seen in children treated for acute lymphoblastic leukemia (ALL), according to a study led by researchers from Boston Children's Hospital, The Children's Hospital at Montefiore, and Dana-Farber/Boston Children's Cancer and Blood Disorders Center. The data, presented at the 56th annual meeting of the American Society of Hematology (abstract #856), suggest ...

Nanoscale resistors for quantum devices

Nanoscale resistors for quantum devices
2014-12-09
WASHINGTON, D.C., December 9, 2014 - Researchers from the London Centre for Nanotechnology have made new compact, high-value resistors for nanoscale quantum circuits. The resistors could speed the development of quantum devices for computing and fundamental physics research. The researchers describe the thin-film resistors in an article in the Journal of Applied Physics, from AIP Publishing. One example of an application that requires high-value resistors is the quantum phase-slip (QPS) circuit. A QPS circuit is made from very narrow wires of superconducting material ...

Metal test could help diagnose breast cancer early

2014-12-09
It may be possible to develop a simple blood test that, by detecting changes in the zinc in our bodies, could help to diagnose breast cancer early. A team, led by Oxford University scientists, took techniques normally used to analyse trace metal isotopes for studying climate change and planetary formation and applied them to how the human body processes metals. In a world-first the researchers were able to show that changes in the isotopic composition of zinc, which can be detected in a person's breast tissue, could make it possible to identify a 'biomarker' (a measurable ...

People with opioid dependence in recovery show 're-regulation' of reward systems

2014-12-09
December 9, 2014 - Within a few months after drug withdrawal, patients in recovery from dependence on prescription pain medications may show signs that the body's natural reward systems are normalizing, reports a study in the Journal of Addiction Medicine, the official journal of the American Society of Addiction Medicine. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health. The study by Scott C. Bunce, PhD, of Penn State University College of Medicine, Hershey, and colleagues provides evidence of "physiological re-regulation" ...

LAST 30 PRESS RELEASES:

Innovative risk score accurately calculates which kidney transplant candidates are also at risk for heart attack or stroke, new study finds

Kidney outcomes in transthyretin amyloid cardiomyopathy

Partial cardiac denervation to prevent postoperative atrial fibrillation after coronary artery bypass grafting

Finerenone in women and men with heart failure with mildly reduced or preserved ejection fraction

Finerenone, serum potassium, and clinical outcomes in heart failure with mildly reduced or preserved ejection fraction

Hormone therapy reshapes the skeleton in transgender individuals who previously blocked puberty

Evaluating performance and agreement of coronary heart disease polygenic risk scores

Heart failure in zero gravity— external constraint and cardiac hemodynamics

Amid record year for dengue infections, new study finds climate change responsible for 19% of today’s rising dengue burden

New study finds air pollution increases inflammation primarily in patients with heart disease

AI finds undiagnosed liver disease in early stages

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

Study challenges assumptions about how tuberculosis bacteria grow

NASA Goddard Lidar team receives Center Innovation Award for Advancements

Can AI improve plant-based meats?

How microbes create the most toxic form of mercury

‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

[Press-News.org] The legend of the kamikaze typhoons
New Geology articles posted online Dec. 4, 2014