PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Stanford team combines logic, memory to build a 'high-rise' chip

Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller

Stanford team combines logic, memory to build a 'high-rise' chip
2014-12-15
(Press-News.org) For decades, the mantra of electronics has been smaller, faster, cheaper.

Today, Stanford engineers add a fourth word - taller.

At a conference in San Francisco, a Stanford team will reveal how to build high-rise chips that could leapfrog the performance of the single-story logic and memory chips on today's circuit cards.

Those circuit cards are like busy cities in which logic chips compute and memory chips store data. But when the computer gets busy, the wires connecting logic and memory can get jammed.

The Stanford approach would end these jams by building layers of logic atop layers of memory to create a tightly interconnected high-rise chip. Many thousands of nanoscale electronic "elevators" would move data between the layers much faster, using less electricity, than the bottle-neck prone wires connecting single-story logic and memory chips today.

The work is led by Subhasish Mitra, a Stanford professor of electrical engineering and computer science, and H.-S. Philip Wong, the Williard R. and Inez Kerr Bell Professor in Stanford's School of Engineering. They describe their new high-rise chip architecture in a paper being presented at the IEEE International Electron Devices Meeting on Dec. 15-17.

The researchers' innovation leverages three breakthroughs.

The first is a new technology for creating transistors, those tiny gates that switch electricity on and off to create digital zeroes and ones. The second is a new type of computer memory that lends itself to multi-story fabrication. The third is a technique to build these new logic and memory technologies into high-rise structures in a radically different way than previous efforts to stack chips.

"This research is at an early stage, but our design and fabrication techniques are scalable," Mitra said. "With further development this architecture could lead to computing performance that is much, much greater than anything available today."

Wong said the prototype chip unveiled at IEDM shows how to put logic and memory together into three-dimensional structures that can be mass-produced.

"Paradigm shift is an overused concept, but here it is appropriate," Wong said. "With this new architecture, electronics manufacturers could put the power of a supercomputer in your hand."

Silicon heat

Engineers have been making silicon chips for decades, but the heat emanating from phones and laptops is evidence of a problem. Even when they are switched off, some electricity leaks out of silicon transistors. Users feel that as heat. But at a system level, the leakage drains batteries and wastes electricity.

Researchers have been trying to solve this major problem by creating carbon nanotubes - or CNT - transistors. They are so slender that nearly 2 billion CNTs could fit within a human hair. CNTs should leak less electricity than silicon because their tiny diameters are easier to pinch shut.

Mitra and Wong are presenting a second paper at the conference showing how their team made some of the highest performance CNT transistors ever built.

They did this by solving a big hurdle: packing enough CNTs into a small enough area to make a useful chip.

Until now the standard process used to grow CNTs did not create a sufficient density of these tubes. The Stanford engineers solved this problem by developing an ingenious technique.

They started by growing CNTs the standard way, on round quartz wafers. Then they added their trick. They created what amounts to a metal film that acts like a tape. Using this adhesive process they lifted an entire crop of CNTs off the quartz growth medium and placed it onto a silicon wafer.

This silicon wafer became the foundation of their high-rise chip.

But first they had to fabricate a CNT layer with sufficient density to make a high performance logic device. So they went though this process 13 times, growing a crop of CNTs on the quartz wafer, and then using their transfer technique to lift and deposit these CNTs onto the silicon wafer.

Using this elegant technological fix, they achieved some of the highest density, highest performance CNTs ever made - especially given that they did this in an academic lab with less sophisticated equipment than a commercial fabrication plant.

Moreover, the Stanford team showed that they could perform this technique on more than one layer of logic as they created their high-rise chip.

What about the memory?

Creating high-performance layers of CNT transistors was only part of their innovation. Just as important was their ability to build a new type of memory directly atop each layer of CNTs.

Wong is a world leader in this new memory technology, which he unveiled at last year's IEDM conference.

Unlike today's memory chips, this new storage technology is not based on silicon.

Instead, the Stanford team fabricated memory using titanium nitride, hafnium oxide and platinum. This formed a metal/oxide/metal sandwich. Applying electricity to this three-metal sandwich one way causes it to resist the flow of electricity. Reversing the electric jolt causes the structure to conduct electricity again.

The change from resistive to conductive states is how this new memory technology creates digital zeroes and ones. The change in conductive states also explains its name: resistive random access memory, or RRAM.

Wong designed RRAM to use less energy than current memory, leading to prolonged battery life in mobile devices.

Inventing this new memory technology was also the key to creating the high-rise chip because RRAM can be made at much lower temperatures than silicon memory.

Interconnected layers

Max Shulaker and Tony Wu, Stanford graduate students in electrical engineering, created the techniques behind the four-story high-rise chip unveiled at the conference.

Everything hinged on the low-heat process for making RRAM and CNTs, which enabled them to fabricate each layer of memory directly atop each layer of CNT logic. While making each memory layer, they were able to drill thousands of interconnections into the logic layer below.

This multiplicity of connections is what enables the high-rise chip to avoid the traffic jams on conventional circuit cards.

There is no way to tightly interconnect layers using today's conventional silicon-based logic and memory. That's because it takes so much heat to build a layer of silicon memory - about 1,000 degrees centigrade - that any attempt to do so would melt the logic below.

Previous efforts to stack silicon chips could save space but not avoid the digital traffic jams. That's because each layer would have to be built separately and connected by wires--which would still be prone to traffic jams, unlike the nanoscale elevators in the Stanford design.

INFORMATION:

Media contact:

Tom Abate, Stanford Engineering: 650-815-1602, tabate@stanford.edu

Clifton B. Parker, Stanford News Service: 650-725-0224, cbparker@stanford.edu


[Attachments] See images for this press release:
Stanford team combines logic, memory to build a 'high-rise' chip Stanford team combines logic, memory to build a 'high-rise' chip 2

ELSE PRESS RELEASES FROM THIS DATE:

People with low numeracy feel negative about taking part in bowel cancer screening

2014-12-15
PEOPLE who have problems with numbers may be more likely to feel negative about bowel cancer screening, including fearing an abnormal result, while some think the test is disgusting or embarrassing, according to a Cancer Research UK supported study* published today (Monday) in the Journal of Health Psychology. The researchers** sent information about bowel cancer screening to patients aged from 45 to 59 along with a questionnaire which assessed their numerical skills and attitudes to the screening test, which looks for blood in stool samples. Almost 965 people - registered ...

Teen use of e-cigarettes growing; Hawaii use rates higher than in mainland

Teen use of e-cigarettes growing; Hawaii use rates higher than in mainland
2014-12-15
E-cigarette use among teenagers is growing in the U.S., and Hawaii teens take up e-cigarette use at higher rates than their mainland counterparts, a new study by University of Hawaii Cancer Center researchers has found. The findings come as e-cigarettes grow in popularity and the Food and Drug Administration is considering how to regulate their sale. Some public health officials are concerned that e-cigarettes may be recruiting a new generation of young cigarette smokers who otherwise might not take up smoking at all, and the study's results bolster this position. Data ...

Simple steps can safeguard against Ebola transmission through organ donation

2014-12-15
While serious infections can be transmitted from donated organs, the risk of passing Ebola virus disease from an organ donor to a recipient is extremely small. In a new editorial published in the American Journal of Transplantation, experts explain how simple assessments of donors can help ensure that the organ supply is safe, while having little impact on the donor pool. Despite screening all organ donors for infection, on rare occasions an organ donor will transmit an unexpected infection to a recipient. Because cases of Ebola virus disease have occurred in the United ...

Are you genetically predisposed to antisocial behavior?

2014-12-15
Both positive and negative experiences influence how genetic variants affect the brain and thereby behaviour, according to a new study. "Evidence is accumulating to show that the effects of variants of many genes that are common in the population depend on environmental factors. Further, these genetic variants affect each other," explained Sheilagh Hodgins of the University of Montreal and its affiliated Institut Universitaire en Santé Mentale de Montréal. "We conducted a study to determine whether juvenile offending was associated with interactions between three ...

Baby cells learn to communicate using the lsd1 gene

Baby cells learn to communicate using the lsd1 gene
2014-12-15
Baltimore MD-- We would not expect a baby to join a team or participate in social situations that require sophisticated communication. Yet, most developmental biologists have assumed that young cells, only recently born from stem cells and known as "progenitors," are already competent at inter-communication with other cells. New research from Carnegie's Allan Spradling and postdoctoral fellow Ming-Chia Lee shows that infant cells have to go through a developmental process that involves specific genes before they can take part in the group interactions that underlie ...

University of Toronto cell biologists discover on-off switch for key stem cell gene

University of Toronto cell biologists discover on-off switch for key stem cell gene
2014-12-15
TORONTO, ON - Consider the relationship between an air traffic controller and a pilot. The pilot gets the passengers to their destination, but the air traffic controller decides when the plane can take off and when it must wait. The same relationship plays out at the cellular level in animals, including humans. A region of an animal's genome - the controller - directs when a particular gene - the pilot - can perform its prescribed function. A new study by cell and systems biologists at the University of Toronto (U of T) investigating stem cells in mice shows, for the ...

Fat cells reprogrammed to increase fat burning

Fat cells reprogrammed to increase fat burning
2014-12-13
White adipose tissue stores excess calories as fat that can be released for use in other organs during fasting. Mammals also have small amounts of brown adipose tissue, which primarily acts as an effective fat burner for the production of heat. Now researchers from the University of Southern Denmark have uncovered the mechanism by which white fat cells from humans gets reprogrammed to become browner. Browning of white adipose tissue increases the energy consumption of the body and therefore constitutes a potential strategy for future treatment of obesity. The challenge ...

Immune cells in brain respond to fat in diet, causing mice to eat

2014-12-13
Immune cells perform a previously unsuspected role in the brain that may contribute to obesity, according to a new study by UC San Francisco researchers. When the researchers fed mice a diet high in saturated milk fats, microglia, a type of immune cell, underwent a population explosion in the brain region called the hypothalamus, which is responsible for feeding behavior. The researchers used an experimental drug and, alternatively, a genetic approach to knock out these microglia, and both strategies resulted in a complete loss of microglia-driven inflammation in the ...

New TGen test uses the unique genetics of women to uncover neurologic disorders

2014-12-12
PHOENIX, Ariz. -- Dec. 12, 2014 -- Using a basic genetic difference between men and women, the Translational Genomics Research Institute (TGen) has uncovered a way to track down the source of a neurological disorder in a young girl. TGen's discovery relies on a simple genetic fact: Men have one X and one Y chromosome, while women have two X chromosomes. This women-only factor was leveraged by TGen investigators to develop a highly accurate method of tracking down a previously unrecognized disorder of the X-chromosome. The study of a pre-teen girl, who went years ...

Disney Research builds computer models to analyze play in pro basketball and soccer

2014-12-12
With the ball at the three-point line near the top of the key, what will Tim Duncan of the NBA's San Antonio Spurs do? Pass to a player posting up? Or does he take a shot? An analysis by Disney Research of player tracking data, however, suggests the highest probability is a pass to guard Tony Parker on his left. It's just one play, by one player, in one sport - and perhaps not that hard for the average courtside observer to anticipate - but with the field of sports becoming more driven by sports analytics, predicting the next thing that a player will do has become a major ...

LAST 30 PRESS RELEASES:

Rapid growth of global wildland-urban interface associated with wildfire risk, study shows

Generation of rat offspring from ovarian oocytes by Cross-species transplantation

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

Compound metalens achieves distortion-free imaging with wide field of view

Age on the molecular level: showing changes through proteins

Label distribution similarity-based noise correction for crowdsourcing

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall

Emerging alternatives to reduce animal testing show promise

Presenting Evo – a model for decoding and designing genetic sequences

Global plastic waste set to double by 2050, but new study offers blueprint for significant reductions

[Press-News.org] Stanford team combines logic, memory to build a 'high-rise' chip
Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller