Computational clues into the structure of a promising energy conversion catalyst
2014-12-18
(Press-News.org) Hydrogen fuel is a promising source of clean energy that can be produced by splitting water into hydrogen and oxygen gas. The reaction is difficult but achievable with the help of a catalyst, a material that can speed up the process. However, current catalysts lack the efficiency required for water splitting to be commercially competitive. Recently scientists have identified one such catalyst, iron-doped nickel oxide, as a highly active compound that can speed up this reaction, but the origin of its activity is not well understood.
Now researchers at Princeton University have reported new insights into the structure of an active component of the nickel oxide catalyst, known as β-NiOOH, using theoretical calculations. Led by Annabella Selloni, professor of chemistry at Princeton, the findings were published in The Journal of Physical Chemistry Letters on October 28.
"Understanding the structure is the basis for any further study of the material's properties. If you don't know the material's structure you can't know what it's doing," Selloni said. Nickel oxide's exact structure has been difficult to determine experimentally because it is constantly changing during the reaction.
The research team took a theoretical approach and employed a "genetic algorithm" to search for the structure. Genetic algorithms operate under a set of parameters that draw inspiration from evolution by creating generation after generation of structures to arrive at the most "fit" or most likely candidates.
Taking the results of the genetic algorithm search in combination with computational techniques known as hybrid density functional theory calculations--which estimate a molecule's electronic structure--Li and Selloni were able to identify structures of nickel oxide that supported existing observations.
One such observation is the material's mosaic texture, composed of tiny grain-like microstructures. The researchers propose that these microstructures are stable tunnel structures that relieve stress between layers. Another observed feature is the doubling of the distance between layers made of the same material, referred to as its c axis periodicity, which represents the alternating layers of Ni(OH)2 and NiO2 formed during the reaction.
Armed with a better understanding of the material's structure, the scientists hope to further map out its activity in the reaction. "I'm interested in the microscopic mechanisms, what are the electrons and atoms doing?" Selloni said.
INFORMATION:
Read the full article here:
Li, Y.-F.; Selloni, A. "Mosaic Texture and Double c-Axis Periodicity of β-NiOOH: Insights from First-Principles and Genetic Algorithm Calculations." J. Phys. Chem. Lett. 2014, 5, 3981.
This work was supported by the US Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences under award DE-FG0212ER16286.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2014-12-18
The United States is a melting pot of different racial and ethnic groups, but it has not been clear how the genetic ancestry of these populations varies across different geographic regions. In a landmark study published by Cell Press December 18th in the American Journal of Human Genetics, researchers analyzed the genomes of more than 160,000 African Americans, Latinos, and European Americans, providing novel insights into the subtle differences in genetic ancestry across the United States.
"Our study not only reveals the historical underpinnings of regional differences ...
2014-12-18
It's no secret that people are judgmental, and young children are no exception. When children witness "good" or "bad" behavior, their brains show an immediate emotional response. But, according to a study appearing in the Cell Press journal Current Biology on December 18, it takes more than that kind of automatic moral evaluation for kids to act with generosity and share their stickers.
By recording kids' brain activity, the study found that generous behavior requires a controlled thought process. The neurodevelopmental findings are the first to link implicit moral evaluations ...
2014-12-18
Golden-winged warblers apparently knew in advance that a storm that would spawn 84 confirmed tornadoes and kill at least 35 people last spring was coming, according to a report in the Cell Press journal Current Biology on December 18. The birds left the scene well before devastating supercell storms blew in.
The discovery was made quite by accident while researchers were testing whether the warblers, which weigh "less than two nickels," could carry geolocators on their backs. It turns out they can, and much more. With a big storm brewing, the birds took off from their ...
2014-12-18
Many recent studies showed that calorie restrictions reduce the incidence of cancer, whereas high-calorie diets cause obesity and diabetes, both of which increase the risk of developing cancers. However, tumor biology still hides complex mechanisms, as revealed by researchers from the Faculty of Medicine of the University of Geneva (UNIGE), Switzerland. In a study published in Cell Metabolism, scientists not only found the unexpected benefit that a change of diet had on certain types of lung cancer, they also deciphered the molecular mechanism underlying this dietary effect ...
2014-12-18
Berkeley -- When birds unexpectedly flee their nesting grounds, it may be a demonstration of Mother Nature's early-warning system that a massive storm is approaching.
While tracking a population of golden-winged warblers, a research team led by ecologist Henry Streby at the University of California, Berkeley, discovered that birds in the mountains of eastern Tennessee fled their breeding grounds one to two days ahead of the arrival of powerful supercell storms. The storm system swept through the central and southern United States in late April 2014, generating 84 confirmed ...
2014-12-18
This news release is available in Japanese. Behind all motor, sensory and memory functions, calcium ions are in the brain, making those functions possible. Yet neuroscientists do not entirely understand how fast calcium ions reach their targets inside neurons, and how that timing changes neural signaling. Researchers at the Okinawa Institute of Science and Technology Graduate University have determined how the distance from calcium channels to calcium sensors on vesicles affects a neuron's signaling precision and efficacy. In international collaboration with research ...
2014-12-18
Climate change impacts will require major but very uncertain transformations of global agriculture systems by mid-century, according to new research from the International Institute for Applied Systems Analysis.
Climate change will require major transformations in agricultural systems, including increased irrigation and moving production from one region to another, according to the new study, published in the journal Environmental Research Letters. However without careful planning for uncertain climate impacts, the chances of getting adaptation wrong are high, the study ...
2014-12-18
PASADENA, Calif., December 18, 2014 -- Self-reported moderate to vigorous exercise was associated with lower blood pressure and blood glucose levels in a Kaiser Permanente study published in the journal Preventing Chronic Disease. Data collected from Kaiser Permanente's Exercise as a Vital Sign (EVS) program, in which medical office staff asks patients about their exercise habits at every health care visit, revealed associations between moderate to vigorous exercise and improved measures of cardiometabolic health for both men and women. Few previous studies have examined ...
2014-12-18
The part of the brain that tells us the direction to travel when we navigate has been identified by UCL scientists, and the strength of its signal predicts how well people can navigate.
It has long been known that some people are better at navigating than others, but until now it has been unclear why. The latest study, funded by the Wellcome Trust and published in Current Biology, shows that the strength and reliability of 'homing signals' in the human brain vary among people and can predict navigational ability.
In order to successfully navigate to a destination, you ...
2014-12-18
VIDEO:
Research from Univ. of Iowa and Russian scientists show crows are capable of executive-level thinking.
Click here for more information.
Crows have long been heralded for their high intelligence - they can remember faces, use tools and communicate in sophisticated ways.
But a newly published study finds crows also have the brain power to solve higher-order, relational-matching tasks, and they can do so spontaneously. That means crows join humans, apes and monkeys in exhibiting ...
LAST 30 PRESS RELEASES:
[Press-News.org] Computational clues into the structure of a promising energy conversion catalyst