Scientists reconstruct evolutionary history of whale hearing with rare museum collection
2015-03-11
(Press-News.org) A team of scientists from the Smithsonian's National Museum of Natural History gained new understanding about the evolutionary history of whale hearing thanks to a rare collection of whales at the museum. The researchers used noninvasive biomedical imaging techniques to trace the development of fetal ear bones in 56 specimens from 10 different families of toothed and baleen whales. They observed how ears develop in unborn whales of modern species, and compared these changes with those reflected in the fossilized ears of extinct whales over the course of millions of years. Their findings confirmed that changes in the development of ear bones in the womb paralleled changes observed throughout whale evolution, providing new insight about how whales successfully made the dramatic evolutionary shift from land to sea and adapted to hearing underwater. More information is available in the March 11 issue of PLOS ONE.
"Whale ears are incredibly complex organs," said Maya Yamato, a Peter Buck postdoctoral fellow in the museum's Department of Vertebrate Zoology and lead author of the study. "Although scientists know that hearing is one of the most important senses that whales use to communicate, navigate and search for food in their underwater world, we are still searching for clues about how their ears actually work. This research provides a window into evolutionary processes that took place millions of years ago and helps explain how whales evolved to hear after they moved from living on land to thriving in today's oceans."
Whales rely on sound to communicate with each other and some species, like humpbacks, are known for their majestic underwater songs. Toothed whales also depend on sounds to navigate and forage. They emit calls and echolocation, a kind of sonar, to process the echoes from these noises and detect objects in the water. Understanding how whales hear is essential to protecting populations in the future as ocean noise from human activities, including global shipping, seismic surveys and sonar training, continues to rise.
Using innovative imaging methods, the team, which included National Museum of Natural History curator of fossil marine mammals Nicholas Pyenson, also became the first group of scientists to identify and depict in situ the development of a specific area of the ear found exclusively in whales. This structure, known as the "acoustic funnel," is thought to be a critical component to better understanding how baleen and toothed whales hear in their aquatic environments.
Yamato used X-ray computed tomography (CT) to scan images of fetal whales found in the museum's fluid marine mammal collections. These specimens represent 15 different species of modern whales ranging in size from blue whales to harbor porpoises. They were collected in association with commercial whaling operations in the early to mid-20th century and also consist of samples from fisheries by-catch and strandings.
The CT scans of the fetal whales allowed the research team to gain crucial insight into the early developmental stages of whale ears that are extremely fragile and nearly impossible to study via traditional research methods. Yamato and Pyenson observed that during the early stages of whale ear development, there are easily recognizable characteristics found in all mammalian ears. As whale ears continue to mature in the womb, these basic mammalian structures rearrange to form the "acoustic funnel," which may play a critical role in underwater hearing. The position of the acoustic funnel also seems to be significant--some baleen whales have a funnel that faces sideways, while all toothed whales have cones that are oriented towards their snouts. These positions correspond with previously described sound reception pathways in each group. Yamato and Pyenson's nondestructive approach to exploring whale ears could facilitate additional studies on the same specimens and potentially act as a springboard for learning more about the evolution of other senses in whales.
Hearing underwater comes with challenges. Although the terrestrial ancestors of modern whales had ears with similar structures to humans and other land mammals, modern whales no longer have external ears, known as pinnae. Instead, toothed whales (including dolphins and porpoises) channel sound to their ears using specialized "acoustic fats," which are found inside their hollow lower jaws and lead to the acoustic funnel of the ears. Baleen whales also have fatty tissues leading to the acoustic funnel, but their hearing mechanisms are less understood.
INFORMATION:
The team's research was made possible with the support of museum collections at National Museum of Natural History. The museum's collection of marine mammals is the largest in the world, consisting of more than 8,900 specimens of cetaceans (whales and dolphins), 3,200 specimens of pinnipeds (seals, sea lions and walruses) and 380 specimens of sirenians (sea cows).
ELSE PRESS RELEASES FROM THIS DATE:
2015-03-11
A new study by University of Alberta law researchers reveals sometimes overly optimistic news coverage of clinical translation of stem cell therapies--and as spokespeople, scientists need to be mindful of harnessing public expectations.
"As the dominant voice in respect to timelines for stem cell therapies, the scientists quoted in these stories need to be more aware of the importance of communicating realistic timelines to the press," said researcher Kalina Kamenova, who co-authored the study with professor Timothy Caulfield in the University of Alberta's Health Law ...
2015-03-11
DURHAM, N.C. - An innovative approach using a tetanus booster to prime the immune system enhances the effect of a vaccine therapy for lethal brain tumors, dramatically improving patient survival, according to a study led by Duke Cancer Institute researchers.
Appearing online March 11, 2015, in the journal Nature, the researchers not only present survival data for a small, randomized and blinded patient trial, they also detail how the tetanus pre-conditioning technique works, providing a roadmap for enhancing dendritic cell immunotherapies that have shown promise ...
2015-03-11
A puzzling observation, pursued through hundreds of experiments, has led Stanford researchers to a simple yet profound discovery: under certain circumstances, droplets of fluid will move like performers in a dance choreographed by molecular physics.
"These droplets sense one another, they move and interact, almost like living cells," said Manu Prakash, an assistant professor of bioengineering and senior author of an article published (today) in Nature.
The unexpected findings may prove useful in semiconductor manufacturing and self-cleaning solar panels, but what truly ...
2015-03-11
DURHAM, N.C. -- The molecular machines that copy DNA in a living cell are amazingly fast and accurate at pairing up the correct bases -- G with C and A with T -- into each new double helix.
They work by recognizing the shape of the right base pair combinations, and discarding those -- such as a G and a T -- that don't fit together correctly. Yet for approximately every 10,000 to 100,000 bases copied, these machines make a mistake that if uncorrected will be immortalized in the genome as a mutation.
For decades, researchers have wondered how these seemingly random ...
2015-03-11
Bacteria that live on iron were found for the first time at three well-known vent sites along the Mid-Atlantic Ridge, one of the longest undersea mountain ranges in the world. Scientists report that these bacteria likely play an important role in deep-ocean iron cycling, and are dominant members of communities near and adjacent to sulfur-rich, black-smoker hydrothermal vents prevalent along the Mid-Atlantic Ridge. These unique chemosynthetic communities live off the chemical components in the vent fluid, rather than sunlight used by their photosynthetic counterparts. This ...
2015-03-11
The human-dominated geological epoch known as the Anthropocene probably began around the year 1610, with an unusual drop in atmospheric carbon dioxide and the irreversible exchange of species between the New and Old Worlds, according to new research published today in Nature.
Previous epochs began and ended due to factors including meteorite strikes, sustained volcanic eruptions and the shifting of the continents. Human actions are now changing the planet, but are we really a geological force of nature driving Earth into a new epoch that will last millions of years?
Scientists ...
2015-03-11
The first 3D reconstruction of the skull of a 360 million-year-old near-ancestor of land vertebrates has been created by scientists from the Universities of Bristol and Cambridge, UK. The 3D skull, which differs from earlier 2D reconstructions, suggests such creatures, which lived their lives primarily in shallow water environments, were more like modern crocodiles than previously thought.
The researchers applied high-resolution X-ray computed tomography (CT) scanning to several specimens of Acanthostega gunnari, one of the 'four-footed' vertebrates known as tetrapods ...
2015-03-11
Mutations in the methyl CpG binding protein 2 gene (MECP2) are the cause of the devastating childhood neurological disorder Rett Syndrome. Despite intense efforts spanning several decades the precise function of MECP2 has been difficult to pin down. Research primarily funded by the Rett Syndrome Research Trust (RSRT) and the National Institutes of Neurological Disease and Stroke (NINDS), and published today in the journal Nature reveals important information that could lead to new treatment approaches. The study, led by Michael Greenberg, Ph.D., Chairman of the Department ...
2015-03-11
WINSTON-SALEM, N.C. - March 11, 2015 - Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that affects approximately 200,000 people a year in the United States and has a higher mortality rate than breast and prostate cancer combined. The condition most often occurs in people who are critically ill or who have significant injuries; those who do survive it often experience profound skeletal muscle weakness.
Over the past 30 years, efforts to fight ARDS with various drug therapies aimed at the lungs have failed. However, doctors at Wake Forest ...
2015-03-11
(Santa Barbara, Calif.) - Foreign born graduate students in STEM (science, technology, engineering and math) disciplines who wish to pursue a career in industry or NGOs are much more likely to stay in the U.S. than those who wish to pursue a career in academia or government concludes a study by researchers at UC Santa Barbara's Center for Nanotechnology in Society. Published on March 11, 2015 in the open access journal PLOS ONE, the study provides new insight into why foreign-born graduate students in STEM fields choose to remain in the United States or return to their ...
LAST 30 PRESS RELEASES:
[Press-News.org] Scientists reconstruct evolutionary history of whale hearing with rare museum collection