(Press-News.org) Researchers at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and Charité - Universitätsmedizin Berlin, Campus Berlin-Buch, have succeeded in generating cells of the immune system to specifically target and destroy cancer cells. The research findings of Matthias Obenaus, Professor Thomas Blankenstein (MDC and Charité), Dr. Matthias Leisegang (MDC) and Professor Wolfgang Uckert (Humboldt-Universität zu Berlin and MDC) as well as Professor Dolores Schendel (Medigene AG, Planegg/Martinsried) have now been published in Nature Biotechnology online (doi:10.1038/nbt.3147)*.
The immune system of the body is trained to distinguish between "foreign" and "self" and to recognize and destroy exogenous structures. In cancer, however, the immune system appears to be quite docile in its response. While it is capable of detecting cancer cells because they often bear characteristics (antigens) on their surfaces that identify them as pathologically altered cells, usually the immune system does not mount an attack but rather tolerates them. The reason: The cancer cells are endogenous to the body, and immune cells do not recognize them as foreign, as they would pathogens. The researchers want to break this tolerance in order to develop therapies against cancer.
T cells are the linchpin in the attack of the immune system. On their surface they have anchor molecules (receptors) with which they recognize foreign structures, the antigens of bacteria or viruses, and thus can target and destroy invaders. Cancer researchers and immunologists are attempting to mobilize this property of the T cells in the fight against cancer. The objective is to develop T cells that specifically recognize and attack only cancer cells but spare other body cells.
Now Matthias Obenaus, Professor Blankenstein, Dr. Leisegang, Professor Uckert and Professor Schendel have developed human T cell receptors (TCRs) that have no tolerance toward human cancer antigens and specifically recognize the antigen MAGE-A1, which is present on various human tumor cells. Instead of directly using human-derived TCRs, which do not mediate substantial anti-tumor effects, the scientists took a "detour" over a mouse model.
First, the researchers transferred the genetic information for human TCRs into the mice, thus creating an entire arsenal of human TCRs (Nature Medicine, doi: 10.1038/nm.2197). When the humanized mouse T cells come into contact with human cancer cells, they perceive the tumor antigens as foreign - like viral or bacterial antigens. Thus, the T cells can specifically target, attack and destroy the tumor cells.
The researchers subsequently isolated the human T-cell receptors of these mice, which are specifically targeted toward the tumor antigen MAGE-A1. Then they transferred the T-cell receptors into human T cells, thereby training them to recognize the cancer cells as foreign.
Some people possess T cells which naturally recognize MAGE-A1 on tumor cells, but only in the Petri dish. In studies using an animal model, only the human TCRs derived from mice were shown to be effective against the tumor. The TCRs from human T cells ignored the tumor completely. The comparison with the tweaked human TCRs from the mouse model shows that the TCRs of patients cannot recognize the tumor antigens sufficiently; they are too weak. "The fact that our TCRs from the mouse are better is a strong indication that the T cells of a human are tolerant toward MAGE-A1," said Matthias Obenaus and Professor Blankenstein.
Using the T-cell receptors they developed, the researchers are planning an initial clinical trial with patients with MAGE-A1 positive multiple myeloma, a malignant disease of the bone marrow.
INFORMATION:
*Identification of human T-cell receptors with optimal affinity to cancer antigens using antigen-negative humanized mice
Matthias Obenaus1, Catarina Leitão1,7, Matthias Leisegang1, Xiaojing Chen1, Ioannis Gavvovidis1 Pierre van der Bruggen2,3, Wolfgang Uckert1,4, Dolores J Schendel5 & Thomas Blankenstein1,6
1Max Delbrück Center for Molecular Medicine, Berlin, Germany. 2Ludwig Institute for Cancer Research, Brussels, Belgium. 3De Duve Institute, Université Catholique de Louvain, Brussels, Belgium. 4Institute of Biology, Humboldt University, Berlin, Germany. 5Medigene AG, Planegg/Martinsried, Germany. 6Institute of Immunology, Charité Campus Buch, Berlin, Germany. 7Present address: Institute for Molecular and Cell Biology, Porto, Portugal.
Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/de
Further information:
https://www.mdc-berlin.de/34982086/en/news/archive/2010/20100806-more_cancer-fighting_power___mouse_with_hi
Sensing pain is extremely unpleasant and sometimes hard to bear - and pain can even become chronic. The perception of pain varies a lot depending on the context in which it is experienced. 50 years ago, neurobiologist Patrick Wall and psychologist Ronald Melzack formulated the so-called "Gate Control Theory" of pain. The two researchers proposed that inhibitory nerve cells in the spinal cord determine whether a pain impulse coming from the periphery, such as the foot, is relayed to the brain or not. A team headed by Hanns Ulrich Zeilhofer from the Institute of Pharmacology ...
The kidney carries out vital functions by continuously filtering the blood and excreting waste products into the urine. This is achieved by a complex system of tubules which transports the urine and regulates its composition. PhD student Annekatrin Aue, Dr. Christian Hinze and Professor Kai Schmidt-Ott of the Max Delbrück Center for Molecular Medicine (MDC) have now discovered how parts of these kidney tubules establish an inner space (lumen) and form a tight barrier against adjacent structures. The epithelial cells which line the tubules coordinate these processes ...
What does hair styling have in common with quantum computing? The braiding pattern has inspired scientists as a potential new approach to quantum calculation. The idea is to rely on a network of intersecting chains, or nanowires, containing two-dimensional quasi-particles. The way these quasi-particles evolve in space time produces a braid-like pattern. These braids could then be used as the logic gate that provides the logical function required for calculations in computers. Due to their tight assembly, such braids are much more difficult to destabilise and less error-prone. ...
A newly discovered crocodilian ancestor may have filled one of North America's top predator roles before dinosaurs arrived on the continent. Carnufex carolinensis, or the "Carolina Butcher," was a 9-foot long, land-dwelling crocodylomorph that walked on its hind legs and likely preyed upon smaller inhabitants of North Carolina ecosystems such as armored reptiles and early mammal relatives.
Paleontologists from North Carolina State University and the North Carolina Museum of Natural Sciences recovered parts of Carnufex's skull, spine and upper forelimb from the Pekin ...
"Despite all the talk about globalisation and the trend towards the expansion of the international trade space, the world is still far from frictionless or flat. There are still large national differences between countries. And these differences can greatly influence the companies' earning potential when they seek to expand."
So says Associate Professor Ingo Kleindienst from the School of Business and Social Sciences at Aarhus University. He has recently concluded a major study of 91 German-owned multinational companies and their ability to make money in foreign markets. ...
This news release is available in French. A research group at the Department of Nutritional Sciences at the University of Toronto, Faculty of Medicine has been using a rat model to see how maternal intake of above-requirement vitamins (A, D, E, and K) impact offspring's brain development and behaviour. Some of their findings were published today in the journal Applied Physiology, Nutrition, and Metabolism.
Much research on vitamins focuses on prevention of deficiencies and the toxicity of very high intakes. However, little has been done on the effect of intakes above ...
Scientists at The University of Manchester have created an enhanced surface for silicone breast implants which could reduce complications and make them less likely to be rejected by the body.
In the US alone almost 400,000 cosmetic breast augmentations and reconstructions are carried out each year, and the number is growing. Some of these cases are for reconstruction after surgery for breast cancer and can have important psychological benefits.
However, around one in five people who has a breast implant suffers from capsular contracture where scar tissue forms and ...
A new research project from the University of Copenhagen has established an effective model for the fight against the escalating burden of tooth decay among children in Asia. The model is an important tool in breaking the social inequity in oral health of children.
In developing countries, the number of children who suffer pain and discomfort in addition to missing out on school lessons is increasing. This project demonstrates that the school is a vital key to better oral health. The project also shows how it is possible to organize school oral health intervention, including ...
(March 19, 2015, Abu Dhabi, UAE) -The Tobacco Atlas, Fifth Edition ("The Atlas"), and its companion mobile app and website TobaccoAtlas.org, were unveiled today by the American Cancer Society and World Lung Foundation at the 16th World Conference on Tobacco or Health. The Atlas graphically details the scale of the tobacco epidemic; the harmful influence of tobacco on health, poverty, social justice, and the environment; the progress being made in tobacco control; and the latest products and tactics being used by the industry to protect its profits and delay and derail tobacco ...
When patients develop acute liver failure, severe complications arise rapidly after the first signs of liver disease, and patients' health can deteriorate rapidly. New research published in the American Journal of Transplantation indicates that emergency evaluations of living liver donors can be conducted safely to allow acute liver failure patients to undergo transplantation before their condition worsens.
If untreated, acute liver failure results in coma and death in more than 80 percent of cases. The only effective therapy is liver transplantation, but the deceased ...