PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Opossum-based antidote to poisonous snake bites could save thousands of lives

2015-03-22
(Press-News.org) DENVER, March 22, 2015 -- Scientists will report in a presentation today that they have turned to the opossum to develop a promising new and inexpensive antidote for poisonous snake bites. They predict it could save thousands of lives worldwide without the side effects of current treatments.

The presentation will take place here at the 249th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society. The meeting features nearly 11,000 reports on new advances in science and other topics. It is being held through Thursday.

Worldwide, an estimated 421,000 cases of poisonous snake bites and 20,000 deaths from these bites occur yearly, according to the International Society on Toxicology.

Intriguingly, opossums shrug off snake bite venom with no ill effects. Claire F. Komives, Ph.D., who is at San Jose State University, explains that initial studies showing the opossum's immunity to snake venom were done in the 1940s. In the early 1990s, a group of researchers identified a serum protein from the opossum that was able to neutralize snake venoms. One researcher, B. V. Lipps, Ph.D., found that a smaller chain of amino acids from the opossum protein, called a peptide, was also able to neutralize the venom.

But Komives says it appears that no one has followed up on those studies to develop an antivenom therapy -- at least not until she and her team came along. Armed with this information, they had the peptide chemically synthesized. When they tested it in venom-exposed mice, they found that it protected them from the poisonous effects of bites from U.S. Western Diamondback rattlesnakes and Russell's Viper venom from Pakistan.

The exact mechanism is not known, but recently published computer models have shown that the peptide interacts with proteins in the snake venom that are toxic to humans, she says. "It appears that the venom protein may bind to the peptide, rendering it no longer toxic."

Komives' team showed that they could program the bacteria E. coli to make the peptide. Producing the peptide in bacteria should enable the group to inexpensively make large quantities of it. The peptide should also be easy to purify from E. coli.

"Our approach is different because most antivenoms are made by injecting the venom into a horse and then processing the serum," says Komives. "The serum has additional components, however, so the patient often has some kind of adverse reaction, such as a rash, itching, wheezing, rapid heart rate, fever or body aches. The peptide we are using does not have those negative effects on mice."

Because the process is inexpensive, the antivenom has a good chance of being distributed to underserved areas across the globe, according to Komives. That includes India, Southeast Asia, Africa and South America, where poisonous snakes bite thousands of people every year.

Komives says that based on the original publications, the antivenom would probably work against venoms from other poisonous snakes, as well as against scorpion, plant and bacterial toxins.

The new antivenom has another potential advantage: It likely could be delivered in just one injectable dose. "Since when a snake bites, it injects venom into the victim in different ways, depending on which part of the body is bitten and the angle of the bite, it is likely that each snake bite would need to be treated differently," says Komives. "It is common that additional antivenom needs to be injected if the patient continues to show the effects of the venom." But because the new antidote appears to have no side effects, at least in mice, it probably could be given in one large dose to attack all of the venom, making additional injections unnecessary, she explains. The team plans to test this theory soon. They also will make large quantities of the antivenom and test it on mice, using a wide variety of venoms and toxins.

INFORMATION:

A press conference on this topic will be held Monday, March 23, at 10 a.m. Mountain time in the Colorado Convention Center. Reporters may check-in at Room 104 in person, or watch live on YouTube http://bit.ly/ACSLiveDenver. To ask questions, sign in with a Google account.

Komives acknowledges funding from a Fulbright-Nehru fellowship and private sources.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research is being presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook

Title Peptide that neutralizes rattlesnake venom in mice can be expressed in E. coli

Abstract The opossum (Didelphis virginiana) is immune to envenomation not only from local snakes but also from venomous snakes living abroad. By fractionating the opossum serum and identifying the active fraction against biological toxins, the research group of B. V. Lipps (Ophidia Products, Inc.) identified a protein, named the Lethal Toxin Neutralizing Factor (LTNF), that was able to neutralize snake venoms in mice. Further work identified a small peptide, the first 10 to 15 amino acids of the protein, to actively protect mice against the effects of the snake venom. The first eleven amino acids of the protein (LKAMDPTPPLW) have been expressed as 23 concatenated peptides in E. coli. The 11-mer, LTNF-11, was chemically synthesized and has been shown to completely neutralize Western Diamondback rattlesnake (Crotalus atrox) venom in mice. The presentation will discuss the methods of expressing and purifying the peptide, as well as the details of the antivenom activity assay in mice.



ELSE PRESS RELEASES FROM THIS DATE:

A molecule from plants and trees could make our roads and roofs 'greener'

2015-03-22
DENVER, March 22, 2015 -- Construction crews may someday use a plant molecule called lignin in their asphalt and sealant mixtures to help roads and roofs hold up better under various weather conditions. It also could make them more environmentally friendly, according to a researcher today at the 249th National Meeting & Exposition of the American Chemical Society (ACS). The meeting, attended by thousands of scientists, features nearly 11,000 reports on new advances in science and other topics. It is being held here through Thursday. Currently, a by-product of crude ...

Chlorine use in sewage treatment could promote antibiotic resistance

Chlorine use in sewage treatment could promote antibiotic resistance
2015-03-22
DENVER, March 22, 2015 -- Chlorine, a disinfectant commonly used in most wastewater treatment plants, may be failing to completely eliminate pharmaceuticals from wastes. As a result, trace levels of these substances get discharged from the plants to the nation's waterways. And now, scientists are reporting preliminary studies that show chlorine treatment may encourage the formation of new, unknown antibiotics that could also enter the environment, potentially contributing to the growing problem of antibiotic resistance. The research, which will be presented today at ...

Special microbes make anti-obesity molecule in the gut

2015-03-22
DENVER, March 22, 2015 -- Microbes may just be the next diet craze. Researchers have programmed bacteria to generate a molecule that, through normal metabolism, becomes a hunger-suppressing lipid. Mice that drank water laced with the programmed bacteria ate less, had lower body fat and staved off diabetes -- even when fed a high-fat diet -- offering a potential weight-loss strategy for humans. The team will describe their approach in one of nearly 11,000 presentations at the 249th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest ...

Air pollutants could boost potency of common airborne allergens

2015-03-22
DENVER, March 22, 2015 -- A pair of air pollutants linked to climate change could also be a major contributor to the unparalleled rise in the number of people sneezing, sniffling and wheezing during allergy season. The gases, nitrogen dioxide and ground-level ozone, appear to provoke chemical changes in certain airborne allergens that could increase their potency. That, in combination with changes in global climate, could help explain why airborne allergies are becoming more common. The findings will be presented today at the 249th National Meeting & Exposition of the ...

Turning packing peanuts into energy-storing battery components (video)

2015-03-22
DENVER, March 22, 2015 -- One person's trash literally could become another's high-tech treasure, according to researchers who have developed a way to turn discarded packing peanuts into components for rechargeable batteries that could outperform the ones we use currently. They will report on the process for the first time today. The talk will be one of nearly 11,000 presentations here at the 249th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society, taking place here through Thursday. A brand-new video on the research ...

New Notre Dame paper examines household production and asset prices

2015-03-20
A new paper by Zhi Da, Viola D. Hank Associate Professor of Finance at the University of Notre Dame, find that residential electricity usage can track household production in real time and helps to price assets. "The importance of household production in economics has been recognized by Nobel Laureate Gary Becker back in 1960s but measuring what household produces at home has been an empirical challenge," Da said." For example, it has been a puzzle why certain industries such as consumer product, food, and clothing earn higher average returns than others such as steel ...

Letting go of the (genetic) apron strings

2015-03-20
A new study from Princeton University sheds light on the handing over of genetic control from mother to offspring early in development. Learning how organisms manage this transition could help researchers understand larger questions about how embryos regulate cell division and differentiation into new types of cells. The study, published in the March 12 issue of the journal Cell, provides new insight into the mechanism for this genetic hand-off, which happens within hours of fertilization, when the newly fertilized egg is called a zygote. "At the beginning, everything ...

Levee detonations reduced 2011 flood risk on Mississippi River, UCI-led study finds

2015-03-20
Irvine, Calif., March 20, 2015 - A controversial decision in 2011 to blow up Mississippi River levees reduced the risk of flooding in a city upstream, lowering the height of the rain-swollen river just before it reached its peak, according to a newly published computer modeling analysis led by UC Irvine scientists. The work focused on a Missouri agricultural area called the New Madrid Floodway that was inundated when the levees were detonated. The researchers found that the region would have flooded anyway if the river had been allowed to overtop the levee banks. And ...

From soda bans to bike lanes: Which 'natural experiments' really reduce obesity?

2015-03-20
Banning sodas from school vending machines, building walking paths and playgrounds, adding supermarkets to food deserts and requiring nutritional labels on restaurant menus: Such changes to the environments where people live and work are among the growing number of solutions that have been proposed and attempted in efforts to stem the rising obesity epidemic with viable, population-based solutions. But which of these changes actually make an impact? To answer that question, many public health researchers take advantage of "natural experiments"--looking at people's calorie ...

Research team discovers backup system that helps sustain liver during crisis

2015-03-20
BOZEMAN, Mont. - Scientists from Montana State University and Sweden have discovered an antioxidant system that helps sustain the liver when other systems are missing or compromised. Like a generator kicking in when the power fails or an understudy taking the stage when a lead actor is sick, the newly found system steps up during a crisis. It's fueled by methionine, an amino acid that can't be manufactured in the body and doesn't come from herbal teas or supplements. People get it only by eating protein. "This is an important finding," said Ed Schmidt, a professor in ...

LAST 30 PRESS RELEASES:

Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)

A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets

New scan method unveils lung function secrets

Searching for hidden medieval stories from the island of the Sagas

Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model

Neuroscience leader reveals oxytocin's crucial role beyond the 'love hormone' label

Twelve questions to ask your doctor for better brain health in the new year

Microelectronics Science Research Centers to lead charge on next-generation designs and prototypes

Study identifies genetic cause for yellow nail syndrome

New drug to prevent migraine may start working right away

Good news for people with MS: COVID-19 infection not tied to worsening symptoms

Department of Energy announces $179 million for Microelectronics Science Research Centers

Human-related activities continue to threaten global climate and productivity

Public shows greater acceptance of RSV vaccine as vaccine hesitancy appears to have plateaued

Unraveling the power and influence of language

Gene editing tool reduces Alzheimer’s plaque precursor in mice

TNF inhibitors prevent complications in kids with Crohn's disease, recommended as first-line therapies

Twisted Edison: Bright, elliptically polarized incandescent light

Structural cell protein also directly regulates gene transcription

Breaking boundaries: Researchers isolate quantum coherence in classical light systems

Brain map clarifies neuronal connectivity behind motor function

Researchers find compromised indoor air in homes following Marshall Fire

Months after Colorado's Marshall Fire, residents of surviving homes reported health symptoms, poor air quality

Identification of chemical constituents and blood-absorbed components of Shenqi Fuzheng extract based on UPLC-triple-TOF/MS technology

'Glass fences' hinder Japanese female faculty in international research, study finds

Vector winds forecast by numerical weather prediction models still in need of optimization

New research identifies key cellular mechanism driving Alzheimer’s disease

Trends in buprenorphine dispensing among adolescents and young adults in the US

Emergency department physicians vary widely in their likelihood of hospitalizing a patient, even within the same facility

Firearm and motor vehicle pediatric deaths— intersections of age, sex, race, and ethnicity

[Press-News.org] Opossum-based antidote to poisonous snake bites could save thousands of lives