Bury nuclear waste down a very deep hole, say UK scientists
Deep borehole disposal of high level nuclear waste
2015-04-14
(Press-News.org) Scientists at the University of Sheffield calculate that all of the UK's high level nuclear waste from spent fuel reprocessing could be disposed of in just six boreholes 5km deep, fitting within a site no larger than a football pitch.
The concept - called deep borehole disposal - has been developed primarily in the UK but is likely to see its first field trials in the USA next year. If the trials are successful, the USA hopes to dispose of its 'hottest' and most radioactive waste - left over from plutonium production and currently stored at Hanford in Washington State - in a deep borehole.
University of Sheffield researchers are presenting the latest findings relating to these trials and new concepts for sealing the waste into the boreholes at the American Nuclear Society (ANS) conference in Charleston this week (April 13-16).
Professor Fergus Gibb, of the University of Sheffield's Faculty of Engineering, explains: "Deep borehole disposal is particularly suitable for high level nuclear waste, such as spent fuel, where high levels of radioactivity and heat make other alternatives very difficult. Much of the drilling expertise and equipment to create the boreholes already exists in the oil and gas and geothermal industries. A demonstration borehole - such as is planned in the US - is what is now needed to move this technology forward."
At the ANS conference next week, Professor Gibb, with co-researcher Dr Karl Travis, will be presenting modelling work carried out by the University of Sheffield team on the Hanford waste, which confirms that around 40 per cent of the waste, in terms of radioactivity, currently stored at the US site could be disposed of in a single borehole.
Fundamental to the success of deep borehole disposal is the ability to seal the hole completely to prevent radionuclides getting back up to the surface. Professor Gibb has designed a method to do this which he will be presenting at the conference next week: to melt a layer of granite over the waste, which will re-solidify to have the same properties as natural rock.
Professor Gibb's colleague at the University of Sheffield, Dr Nick Collier, will propose a method of fixing and surrounding the waste within the borehole using specialist cements able to handle the temperatures and pressures at that depth.
Deep borehole disposal (DBD) has a number of advantages over the current solution envisaged for all UK nuclear waste, which is in a mined repository at 500m depth:
DBD is effectively 'pay-as-you-go' disposal. A mined repository can cost from hundreds of millions to tens of billions of dollars to construct before any waste can be disposed of; DBD costs a few tens of millions of dollars per borehole.
There are more geological sites suitable for DBD as the granite layer that is required can be found at appropriate depths under most of the continental crust.
A borehole could be drilled, filled and sealed in less than five years, compared to the current timescale for a UK mined repository, which is to open in 2040 and take its first waste by 2075 (although a site has not yet been agreed).
As DBD disposes of nuclear waste at greater depths and with greater safety and because there are more potential sites available, it should be easier to obtain public and political acceptance of the technology.
DBD has limited environmental impact and does not require a huge site: the holes are a maximum 0.6m in diameter and can be positioned just a few tens of metres apart. Once a borehole is complete, all physical infrastructure on the surface can be removed.
While seismic activity might damage the containers within the borehole, fracture the surrounding rock and disrupt some of the nearest barriers in the borehole, it would still not destroy the isolation of the waste or make it possible for radioactivity to reach the surface or any ground water.
The demonstration borehole in the USA will be drilled just under half a metre in diameter and trials will be conducted to ensure waste packages can be inserted into the borehole and recovered if required. Initial results are expected in 2016. If these results are positive, disposal of the Hanford waste capsules would then take place in another borehole, just 0.22m in diameter.
INFORMATION:
ELSE PRESS RELEASES FROM THIS DATE:
2015-04-14
Simply declaring a region as a nature protection area is not enough, regular monitoring of its ecological condition is also necessary. Since Nature protection areas already cover almost one fifth of the surface of the European Union, it is impossible to inspect such a vast area in the traditional way on foot. Therefore, new methods are being developed to monitor Europe's nature protection areas from the air. Short laser pulses are sent to the ground, and information on the status of the habitat can be deduced from the reflected light signals using elaborate computer algorithms.
Laser ...
2015-04-14
Cancer Mortality Reductions Were Greatest Among Countries Where Cancer Care Spending Rose The Most, 1995-2007.
Warren Stevens of Precision Health Economics, Dana P. Goldman of the Schaeffer Center for Health Policy and Economics at the University of Southern California, and coauthors compared cancer care across sixteen countries over time, examining changes in cancer spending and two measures of cancer mortality (amenable and excess mortality). They found that, compared to low-spending health systems, high-spending systems had consistently lower cancer mortality in the ...
2015-04-14
Fast Facts:
More than 30,000 people in the U.S. are diagnosed with Lou Gehrig's disease, or amyotrophic lateral sclerosis (ALS).
Johns Hopkins researchers have transformed skin cells donated by ALS patients into brain cells affected by the progressive, fatal disease.
The resulting cell library is being used by researchers worldwide in the quest for better ALS treatments.
Researchers at Johns Hopkins Medicine have transformed skin cells from patients with Lou Gehrig's disease, or amyotrophic lateral sclerosis (ALS), into brain cells affected by the progressive, ...
2015-04-14
The World Health Organization (WHO) have announced a new statement on the public disclosure of clinical trial results which updates and expands a previous statement that noted the "the registration of all interventional trials is a scientific, ethical, and moral responsibility." The new statement includes timelines by which researchers are expected to report clinical trials results. In an Essay published in this week's PLOS Medicine Vasee Moorthy and colleagues from the WHO outline the rationale behind the new statement.
A new element in the WHO statement is the definition ...
2015-04-14
Extreme hazards - rare, high-impact events - pose a serious and underestimated threat to humanity. The extremes of the broad ensemble of natural and anthropogenic hazards can lead to global disasters and catastrophes. Because they are rare and modern society lacks experience with them, they tend to be ignored in disaster risk management. While the probabilities of most natural hazards do not change much over time, the sensitivity of the built environment and the vulnerability of the embedded socio-economic fabric have increased rapidly. Exposure to geohazards has increased ...
2015-04-14
April 14, 2015 A new material developed at the University of Colorado Boulder could radically reduce the energy needed to produce a wide variety of plastic products, from grocery bags and cling wrap to replacement hips and bulletproof vests.
Approximately 80 million metric tons of polyethylene is produced globally each year, making it the most common plastic in the world. An essential building block for manufacturing polyethylene is ethylene, which must be separated from a nearly identical chemical, ethane, before it can be captured and used.
The similarities between ...
2015-04-14
Researchers from the RIKEN Center for Emergent Matter Science in Japan have uncovered the first evidence of an unusual quantum phenomenon--the integer quantum Hall effect--in a new type of film, called a 3D topological insulator. In doing this, they demonstrated that "surface Dirac states"--a particular form of massless electrons--are quantized in these materials, meaning that they only take on certain discrete values. These discoveries could help move science forward toward the goal of dissipationless electronics--electronic devices that can operate without producing the ...
2015-04-14
SAN DIEGO (April 14, 2015) -- A team of biologists from San Diego State University has developed a platform for identifying drugs that could prove to be effective against a variety of viral diseases. In a pair of recent articles in the Journal of Biomolecular Screening and the Journal of Visualized Experiments, the researchers describe how the methodology works, using dengue virus as an example, and they identify a novel drug which may someday be used to combat the disease.
Over the past several years, the researchers, led by SDSU biologist Roland Wolkowicz, have been ...
2015-04-14
Research from The University of Manchester using cutting edge computer analysis reveals that despite mutating, Ebola hasn't evolved to become deadlier since the first outbreak 40 years ago.
The surprising results demonstrate that whilst a high number of genetic changes have been recorded in the virus, it hasn't changed at a functional level to become more or less virulent.
The findings, published in the journal Virology, demonstrate that the much higher death toll during the current outbreak, with the figure at nearly 10,500, isn't due to mutations/evolution making ...
2015-04-14
Physicists from ITMO University, Ioffe Institute and Australian National University managed to make homogenous cylindrical objects completely invisible in the microwave range. Contrary to the now prevailing notion of invisibility that relies on metamaterial coatings, the scientists achieved the result using a homogenous object without any additional coating layers. The method is based on a new understanding of electromagnetic wave scattering. The results of the study were published in Scientific Reports.
The scientists studied light scattering from a glass cylinder filled ...
LAST 30 PRESS RELEASES:
[Press-News.org] Bury nuclear waste down a very deep hole, say UK scientists
Deep borehole disposal of high level nuclear waste