PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Cell type responsible for scarring, skin-cancer growth identified by Stanford scientists

2015-04-16
(Press-News.org) A skin cell responsible for scarring, and a molecule that inhibits the cell's activity, have been identified by researchers at the Stanford University School of Medicine.

The molecule slowed wound healing in mice but alleviated scarring, the researchers said.

The researchers also found that the cell may play a role in the growth of melanoma and in skin damage caused by radiation. A drug that acts in the same way as the inhibitory molecule is already approved for use in humans as a treatment for type-2 diabetes, so it could potentially move quickly into clinical trials for the treatment of scarring and melanoma.

"The biomedical burden of scarring is enormous," said Michael Longaker, MD, co-director of Stanford''s Institute for Stem Cell Biology and Regenerative Medicine. "About 80 million incisions a year in this country heal with a scar, and that's just on the skin alone. Internal scarring is responsible for many medical conditions, including liver cirrhosis, pulmonary fibrosis, intestinal adhesions and even the damage left behind after a heart attack."

A paper describing the researchers' findings will be published April 17 in Science. Longaker, a professor of surgery, and institute director Irving Weissman, a professor of pathology and of developmental biology, are the senior authors. Postdoctoral scholar Yuval Rinkevich, PhD, and graduate student Graham Walmsley share lead authorship.

Scars are comprised mainly of collagen, a fibrous protein secreted by a type of cell found in the skin called a fibroblast. Collagen is one of the main components of the extracellular matrix -- a three-dimensional web that supports and stabilizes the cells in the skin.

An early observation

Twenty-five years ago, Longaker observed that prior to the third trimester of pregnancy, human fetuses heal without scarring after surgery. Furthermore, many animals heal without scarring.

"We are the only species that heal with a pathological scar, called a keloid, which can overgrow the site of the original wound," said Longaker. "Humans are a tight-skinned species, and scarring is a late evolutionary event that probably arose in response to a need, as hunter-gatherers, to heal quickly to avoid infection or detection by predators. We've evolved for speedy repair."

In late 2013, a study led by researchers at King's College London showed that fibroblasts in the skin of mice arise as two distinct lineages. One, in the lower layer of the skin, mediates the initial steps of repair in response to wounding.

Longaker, Rinkevich and Walmsley wondered whether this fibroblast type, which expresses a protein called engrailed, could be responsible for the collagen deposition that leads to scarring. They generated genetically engineered mice in which the cells, called EPF cells for "engrailed-positive fibroblasts," were labeled with green fluorescent protein to allow tracking of the cells' location during the animals' development. The cells were also engineered to carry a "kill switch" that could be activated by the presence of diphtheria toxin, which would allow the researchers to assess how wounds healed in the absence of EPF cells.

The researchers found that the proportion of EPF cells, compared to the overall number of fibroblasts in the skin on the backs of the animals, increased dramatically from less than 1 percent in 10-day-old embryos to about 75 percent in mice that were 1 month old.

Role of cell type in scarring

The researchers also found evidence pointing to a major role for EPF cells in scarring. After diphtheria toxin was applied to wounds on the backs of mice, the wounds healed with less scarring.

"The EPF cells are clearly responsible for the vast majority of scarring," said Longaker. Complete healing in the diphtheria-toxin-treated wounds required an additional six days compared to controls, but much of the repaired skin looked and appeared to function normally. In contrast, scarred skin is frequently less flexible and weaker than uninjured skin.

When the researchers analyzed the EPF cells more closely, they found that they express a protein called CD26 on their surface. CD26 activity has been implicated in the metabolism of many hormones, including insulin, and the human version of the protein is a target for inhibitors such as sitagliptin (distributed by Merck under the trade name Januvia) and vildagliptin (distributed by Novartis) that are marketed for treating low blood sugar levels in people with type-2 diabetes.

The researchers found that a small molecule that blocks the activity of CD26 also reduced the amount of scarring in a manner similar to that seen when EPF cells were eliminated. In particular, scars that formed on wounds treated with the CD26-inhibitor covered an area of only about 5 percent of the original wound. In contrast, untreated skin formed scars that covered over 30 percent of the original wound area.

Radiation damage, melanoma and EPF cells

In addition to examining the role played by EPF cells in scarring, the researchers investigated skin damage caused by radiation, as well as the growth of melanoma cancer cells. Radiation therapy for cancer frequently causes damage to the skin it must pass through to reach the inside of the body. Eliminating the EPF cells in the mice also eliminated much of the fibrosis caused by radiation exposure, the researchers found. Furthermore, melanoma cancer cells transplanted onto the backs of the laboratory mice grew more slowly when EPF cells were eliminated.

"I've been obsessed with scarring for 25 years," said Longaker. "Now we're bringing together the fields of wound healing and tumor development in remarkable new ways. It's incredibly exciting."

INFORMATION:

Additional Stanford authors are postdoctoral scholars Michael Hu, MD, Zeshaan Maan, MD, and Aaron Newman, PhD; research associate Micha Drukker, PhD; and graduate student Michael Januszyk.

The research was conducted as a collaboration with scientists from Weissman's laboratory and the laboratories of Peter Lorenz, MD, and Geoffrey Gurtner, MD, both professors of plastic and reconstructive surgery at Stanford.

The research was supported by the National Institutes of Health (grants R01GM087609, U01HL099776 and GM07365), the California Institute for Regenerative Medicine, the Smith Family Trust, the Hagey Laboratory for Pediatric Regenerative Medicine, the Oak Foundation, a gift from Ingrid Lai and Bill Shu in honor of Anthony Shu, the Gunn/Olivier fund, the Human Frontier Science Program, the Machiah Foundation, the Siebel Foundation and the Plastic Surgery Foundation.

Information about Stanford's Department of Surgery, which also supported the work, is available at http://surgery.stanford.edu.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Lucile Packard Children'€™s Hospital Stanford. For information about all three, please visit http://med.stanford.edu.



ELSE PRESS RELEASES FROM THIS DATE:

Repeated marine predator evolution tracks changes in ancient and Anthropocene oceans

2015-04-16
For more than 250 million years, four-limbed land animals known as tetrapods have repeatedly conquered the Earth's oceans. These creatures--such as plesiosaurs, penguins and sea turtles--descended from separate groups of terrestrial vertebrates that convergently evolved to thrive in aquatic environments. In a new scientific review, a team of Smithsonian scientists synthesized decades of scientific discoveries to illuminate the common and unique patterns driving the extraordinary transitions that whales, dolphins, seals and other species underwent as they moved from land ...

ALMA reveals intense magnetic field close to supermassive black hole

ALMA reveals intense magnetic field close to supermassive black hole
2015-04-16
Supermassive black holes, often with masses billions of times that of the Sun, are located at the heart of almost all galaxies in the Universe. These black holes can accrete huge amounts of matter in the form of a surrounding disc. While most of this matter is fed into the black hole, some can escape moments before capture and be flung out into space at close to the speed of light as part of a jet of plasma. How this happens is not well understood, although it is thought that strong magnetic fields, acting very close to the event horizon, play a crucial part in this process, ...

160 people die of rabies every day, says major new study

160 people die of rabies every day, says major new study
2015-04-16
A global study on canine rabies, published today (16 April 2015), has found that 160 people die every single day from the disease. The report is the first study to consider the impact in terms of deaths and the economic costs of rabies across all countries. Even though the disease is preventable, the study says that around 59,000 people die every year of rabies transmitted by dogs. The multi-author study, by the Global Alliance for Rabies Control's Partners for Rabies Prevention Group, also shows that annual economic losses because of the disease are around 8.6 billion ...

Scientists discover protein that boosts immunity to viruses and cancer

2015-04-16
Scientists have discovered a protein that plays a central role in promoting immunity to viruses and cancer, opening the door to new therapies. Experiments in mice and human cells have shown that the protein promotes the proliferation of cytotoxic T cells, which kill cancer cells and cells infected with viruses. The discovery was unexpected because the new protein had no known function and doesn't resemble any other protein. Researchers from Imperial College London who led the study are now developing a gene therapy designed to boost the infection-fighting cells, and ...

Giant galaxies die from the inside out

Giant galaxies die from the inside out
2015-04-16
A major astrophysical mystery has centred on how massive, quiescent elliptical galaxies, common in the modern Universe, quenched their once furious rates of star formation. Such colossal galaxies, often also called spheroids because of their shape, typically pack in stars ten times as densely in the central regions as in our home galaxy, the Milky Way, and have about ten times its mass. Astronomers refer to these big galaxies as red and dead as they exhibit an ample abundance of ancient red stars, but lack young blue stars and show no evidence of new star formation. The ...

SwRI-led team studies meteorites from asteroids to date moon-forming impact

2015-04-16
San Antonio -- April 16, 2015 -- A NASA-funded research team led by Dr. Bill Bottke of Southwest Research Institute (SwRI) independently estimated the Moon's age as slightly less than 4.5 billion years by analyzing impact-heated shock signatures found in stony meteorites originating from the Main Asteroid Belt. Their work will appear in the April 2015 issue of the journal Science. "This research is helping to refine our time scales for 'what happened when' on other worlds in the solar system," said Bottke, of the Institute for the Science of Exploration Targets (ISET). ...

Subsidies key in improving sanitation, new study finds

Subsidies key in improving sanitation, new study finds
2015-04-16
April 16, 2015, NEW HAVEN, CT - With poor sanitation estimated to cause 280,000 deaths per year worldwide, improving sanitation is a key policy goal in many developing countries. Yet governments and major development institutions disagree over how to address the problem. A new study released in Science today found that in Bangladesh, a community-motivation model that has been used in over 60 countries to increase use of hygienic latrines had no effect, yet latrine coverage expands substantially when that model is combined with subsidies for hygienic latrines targeted to ...

Astronomers reveal supermassive black hole's intense magnetic field

Astronomers reveal supermassive black holes intense magnetic field
2015-04-16
Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy. The results appear in the 17 April 2015 issue of the journal Science. A team of five astronomers from Chalmers University of Technology have revealed an extremely powerful magnetic field, beyond anything previously detected in the core of a galaxy, very close to the event horizon of a supermassive black hole. This new observation helps astronomers to understand the structure and ...

Death of giant galaxies spreads from the core

Death of giant galaxies spreads from the core
2015-04-16
Astronomers have shown for the first time how star formation in "dead" galaxies sputtered out billions of years ago. The NASA/ESA Hubble Space Telescope and ESO's Very Large Telescope (VLT) have revealed that three billion years after the Big Bang, these galaxies still made stars on their outskirts, but no longer in their interiors. The quenching of star formation seems to have started in the cores of the galaxies and then spread to the outer parts. The results will be published in the 17 April 2015 issue of the journal Science. A major astrophysical mystery has centred ...

How ancient species survived or died off in their old Kentucky home

How ancient species survived or died off in their old Kentucky home
2015-04-16
"The answers to extinction, survival and evolution are right here in the dirt," says University of Cincinnati Quaternary science researcher Ken Tankersley, associate professor of anthropology and geology. "And we are continually surprised by what we find." While many scientists focus on species' extinction wherever there has been rapid and profound climate change, Tankersley looks closely at why certain species survived. For many years he has invited students and faculty from archeology and geology, and representatives from the Cincinnati Museum Center and Kentucky ...

LAST 30 PRESS RELEASES:

Tongue cancer organoids reveal secrets of chemotherapy resistance

Applications, limitations, and prospects of different muscle atrophy models in sarcopenia and cachexia research

FIFAWC: A dataset with detailed annotation and rich semantics for group activity recognition

Transfer learning-enhanced physics-informed neural network (TLE-PINN): A breakthrough in melt pool prediction for laser melting

Holistic integrative medicine declaration

Hidden transport pathways in graphene confirmed, paving the way for next-generation device innovation

New Neurology® Open Access journal announced

Gaza: 64,000 deaths due to violence between October 2023 and June 2024, analysis suggests

Study by Sylvester, collaborators highlights global trends in risk factors linked to lung cancer deaths

Oil extraction might have triggered small earthquakes in Surrey

Launch of world’s most significant protein study set to usher in new understanding for medicine

New study from Chapman University reveals rapid return of water from ground to atmosphere through plants

World's darkest and clearest skies at risk from industrial megaproject

UC Irvine-led discovery of new skeletal tissue advances regenerative medicine potential

Pulse oximeters infrequently tested by manufacturers on diverse sets of subjects

Press Registration is open for the 2025 AAN Annual Meeting

New book connects eugenics to Big Tech

Electrifying your workout can boost muscles mass, strength, UTEP study finds

Renewed grant will continue UTIA’s integrated pest management program

Researchers find betrayal doesn’t necessarily make someone less trustworthy if we benefit

Pet dogs often overlooked as spreader of antimicrobial-resistant Salmonella

Pioneering new tool will spur advances in catalysis

Physical neglect as damaging to children’s social development as abuse

Earth scientist awarded National Medal of Science, highest honor US bestows on scientists

Research Spotlight: Lipid nanoparticle therapy developed to stop tumor growth and restore tumor suppression

Don’t write off logged tropical forests – converting to oil palm plantations has even wider effects on ecosystems

Chimpanzees are genetically adapted to local habitats and infections such as malaria

Changes to building materials could store carbon dioxide for decades

EPA finalized rule on greenhouse gas emissions by power plants could reduce emissions with limited costs

Kangaroos kept a broad diet through late Pleistocene climate changes

[Press-News.org] Cell type responsible for scarring, skin-cancer growth identified by Stanford scientists