(Press-News.org) MADISON, Wis. -- In a move that could improve the energy storage of everything from portable electronics to electric microgrids, University of Wisconsin-Madison and Brookhaven National Laboratory researchers have developed a novel X-ray imaging technique to visualize and study the electrochemical reactions in lithium-ion rechargeable batteries containing a new type of material, iron fluoride.
"Iron fluoride has the potential to triple the amount of energy a conventional lithium-ion battery can store," says Song Jin, a UW-Madison professor of chemistry and Wisconsin Energy Institute affiliate. "However, we have yet to tap its true potential."
Graduate student Linsen Li worked with Jin and other collaborators to perform experiments with a state-of-the-art transmission X-ray microscope at the National Synchrotron Light Source at Brookhaven. There, they collected chemical maps from actual coin cell batteries filled with iron fluoride during battery cycling to determine how well they perform. The results are published today in the journal Nature Communications.
"In the past, we weren't able to truly understand what is happening to iron fluoride during battery reactions because other battery components were getting in the way of getting a precise image," says Li.
By accounting for the background signals that would otherwise confuse the image, Li was able to accurately visualize and measure, at the nanoscale, the chemical changes iron fluoride undergoes to store and discharge energy.
Thus far, using iron fluoride in rechargeable lithium ion batteries has presented scientists with two challenges. The first is that it doesn't recharge very well in its current form.
"This would be like your smart phone only charging half as much the first time, and even less thereafter," says Li. "Consumers would rather have a battery that charges consistently through hundreds of charges."
By examining iron fluoride transformation in batteries at the nanoscale, Jin and Li's new X-ray imaging method pinpoints each individual reaction to understand why capacity decay may be occurring.
"In analyzing the X-ray data on this level, we were able to track the electrochemical reactions with far more accuracy than previous methods, and determined that iron fluoride performs better when it has a porous microstructure," says Li.
The second challenge is that iron fluoride battery materials don't discharge as much energy as they take in, reducing energy efficiency. The current study yielded some preliminary insights into this problem and Jin and Li plan to tackle this challenge in future experiments.
Some implications of this research are obvious -- like using portable electronic devices for longer before charging -- but Jin also foresees a bigger and broader range of applications.
"If we can maximize the cycling performance and efficiency of these low-cost and abundant iron fluoride lithium ion battery materials, we could advance large-scale renewable energy storage technologies for electric cars and microgrids," he says.
Jin also believes that the novel X-ray imaging technique will facilitate the studies of other technologically important solid-state transformations and help to improve processes such as preparation of inorganic ceramics and thin-film solar cells.
INFORMATION:
The experiments were performed with the help of Yu-chen Karen Chen-Wiegart, Feng Wang, Jun Wang and their co-workers at Beamline X8C, National Synchrotron Light Source, Brookhaven National Laboratory, and supported by the U.S. Department of Energy Basic Energy Sciences and a seed grant from the Wisconsin Energy Institute. The synthesis of the battery materials in Jin's lab was supported by National Science Foundation Division of Materials Research.
Mark E. Griffin, mark.griffin@wisc.edu, 608-890-2168
NOTE: An image to illustrate this story can be downloaded at https://uwmadison.box.com/Iron-fluoride
Toronto, CANADA - Imagine living a healthy, normal life without the ability to re-experience in your mind personal events from your past. You have learned details about past episodes from your life and can recite these to family and friends, but you can't mentally travel back in time to imagine yourself in any of them.
Cognitive scientists from Baycrest Health Sciences' Rotman Research Institute in Toronto had a rare opportunity to examine three middle-aged adults (two from the U.S., the other from the U.K.) who essentially live their lives in the "third person" because ...
Tryptophan is an amino acid, one of the building blocks of proteins. It is used extensively to study how proteins change their 3D structure, and also how they interact with other proteins and molecules. This is studied with a fluorescence technique called FRET, which measures the transfer of energy from tryptophan to another molecule. But in some cases, FRET data could be distorted because tryptophan transfers an electron instead of energy. Using a unique spectroscopic technique, scientists at EPFL have now confirmed for the first time that this is indeed the case. The ...
CAMBRIDGE, Mass. (April 20, 2015) - A novel approach that allows real-time imaging of the immune system's response to the presence of tumors--without the need for blood draws or invasive biopsies--offers a potential breakthrough both in diagnostics and in the ability to monitor efficacy of cancer therapies.
The method, developed in the lab of Whitehead Institute Member Hidde Ploegh and reported online this week in the Proceedings of the National Academy of Sciences (PNAS), harnesses the imaging power of positron emission tomography (PET), which is normally used to monitor ...
PHILADELPHIA, April 20, 2015 - New findings hidden within the complex machinery behind the vicious cycle of chronic inflammation and cancer are presented today by researchers from the University of Pittsburgh Cancer Institute, partner with UPMC Cancer Center, at the American Association for Cancer Research (AACR) Annual Meeting in Philadelphia.
The research is funded by the National Institutes of Health (NIH) and Fondazione RiMED, of Palermo, Italy.
Inflammation is an important immune system tool that helps the body rid itself of foreign invaders, such as bacteria. ...
New analysis of world-famous 3.46 billion-year-old rocks by researchers from the University of Bristol, the University of Oxford and UWA (the University of Western Australia) is set to finally resolve a long running evolutionary controversy.
The new research, published this week in Proceedings of the National Academy of Sciences USA, shows that structures once thought to be Earth's oldest microfossils do not compare with younger fossil candidates but have, instead, the character of peculiarly shaped minerals.
In 1993, US scientist Bill Schopf described tiny carbon-rich ...
MADISON, Wis. -- If your home country is historically heterogeneous and you know it, crack a smile.
People who live in countries built on centuries of migration from a wide range of other countries are more emotionally expressive than people in more insular cultures, according to research led by University of Wisconsin-Madison psychology Professor Paula Niedenthal.
The study, published this week in the Proceedings of the National Academy of Sciences, compared several social and demographic variables to the way people describe the rules for displaying emotion in dozens ...
A University of Colorado Boulder and North Carolina State University-led team has produced the first atlas of airborne microbes across the continental U.S., a feat that has implications for better understanding health and disease in humans, animals and crops.
The researchers collected outdoor dust samples from roughly 1,200 homes in all 50 states from both urban and rural areas using a powerful DNA sequencing technique to identify specific bacteria and fungal species. While standard, culture-based surveys are able to detect only a handful of different species, the high-tech ...
The oceans and other water bodies contain billions of tons of dissolved uranium. Over the planet's history, some of this uranium was transformed into an insoluble form, causing it to precipitate and accumulate in sediments. There are two ways that uranium can go from a soluble to an insoluble form: either through the action of live organisms - bacteria - or by interacting chemically with certain minerals. Knowing which pathway was taken can provide valuable insight into the evolution and activity of microbial biology over Earth's history. Publishing in the journal PNAS, ...
New University of Washington research finds that children's early environments have a lasting impact on their responses to stress later in life, and that the negative effects of deprived early environments can be mitigated -- but only if that happens before age 2.
Published April 20 in the Proceedings of the National Academy of Sciences, the research is believed to be the first to identify a sensitive period during early life when children's stress response systems are particularly likely to be influenced by their caregiving environments.
"The early environment has ...
MISSOULA - Many scientists assume that the growing level of carbon dioxide in the atmosphere will accelerate plant growth. However, a new study co-written by University of Montana researchers suggests much of this growth will be curtailed by limited soil nutrients.
The end result: By the end of the century, there may be more than an additional 10 percent of CO2 in the atmosphere, which would accelerate climate change.
"If society stays on its current trajectory of CO2 emissions and the growth rates of plants don't increase as much as many models project, the result by ...