(Press-News.org) EUGENE, Ore. -- (April 27, 2015) -- Two wrongs can make a right, at least in the world of visual perception and motor functioning, according to two University of Oregon brain scientists.
In a two-experiment study, published last month in the journal Frontiers in Human Neuroscience, UO neuroscientists Paul Dassonville and Scott A. Reed used eye-tracker technology in a dark laboratory to test a developing theory about how the brain determines the locations of nearby objects.
In a test of perception, 20 students were asked to report whether a line was tilted left or right of vertical. Their performance in this simple task became skewed, however, when the line was shown within a tilted frame. A left-leaning frame caused the line to appear tilted to the right, and vice versa.
In spite of this well-known visual illusion, when subjects were asked to look at the end of the line they had no trouble making accurate eye movements, demonstrating an apparent difference in the way that perception and actions respond to the illusion.
Similar demonstrations have led other researchers to suggest that the brain forms two maps of space - an illusion-prone map for creating conscious perception of the world, and an illusion-resistant map used for guiding movements.
Results of the new experiments showed that accurate eye movements to the end of the line prove to be the exception, rather than the rule. When subjects were instead asked to make simple vertical eye movements, for example, those movements were affected by the tilted frame just as visual perception had been.
"In the lab, we explore the kinds of assumptions the brain makes about the world around us," said Dassonville, professor of psychology and member of the Institute of Neuroscience. In the real world, he said, judgments about an object's orientation are aided by visual clues that help anchor the perception of vertical, such as the view of a doorframe, a window frame or where two walls meet. In the laboratory, these cues were replaced by misleading cues of the tilted frame, resulting in the illusion.
"The tilted frame distorts our perception of vertical just as our sense of direction would be distorted by a compass that incorrectly points west instead of north. If you try to walk north using a broken compass, you'll head off in the wrong direction," said Dassonville. "The perceptual illusion caused by our tilted frame is analogous to a treasure map that is created using the faulty compass. The map is technically incorrect, but as long as you use the combination of the faulty map and the faulty compass to navigate around, you'll be able to accurately find the treasure once again. The errors cancel out."
In the experimental task, the cancellation of errors allowed the subjects to make accurate movements to the end of the line in spite of the illusion.
These new conclusions challenge the model of visual function that suggests that conscious perception of an object's location is formed in a wholly different part of the brain than that used for guiding actions, says co-author Scott A. Reed, an adjunct instructor in the Department of Psychology.
"We agree there are separate pathways in the brain for different aspects of visual function," Dassonville said, "but it's not the case that one is only about perception and the other is only about action."
"What we found in our study," Reed said, "is that the brain relies on a shared representation of space that is used to both make perceptual judgments about the world and to guide behavior."
INFORMATION:
Sources: Paul Dassonville, associate professor of psychology, 541-346-4956, prd@uoregon.edu and Scott A Reed, adjunct professor of psychology, 541-346-5724, sreed@uoregon.edu
Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.
Links:
Paper abstract: http://journal.frontiersin.org/article/10.3389/fnhum.2015.00140/abstract
Dassonville faculty page: http://psychology.uoregon.edu/profile/prd/
Reed page: http://psychology.uoregon.edu/profile/sreed/
Department of Psychology: http://psychology.uoregon.edu/
Institute of Neuroscience: http://uoneuro.uoregon.edu/ionmain/htdocs/index.html
BOSTON - Anyone who has ever tried to lose weight knows that it's no fun to feel hungry. In fact, the drive to tame gnawing hunger pangs can sabotage even the best-intentioned dieter. But how exactly is it that fasting creates these uncomfortable feelings - and consuming food takes them away?
Working to unravel the complex wiring system that underlies this intense physiological state, investigators at Beth Israel Deaconess Medical Center (BIDMC) and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health ...
Although closely related to the notorious carnivore Tyrannosaurus rex, a new lineage of dinosaur discovered in Chile is proving to be an evolutionary jigsaw puzzle, as it preferred to graze upon plants.
Palaeontologists are referring to Chilesaurus diegosuarezi as a 'platypus' dinosaur because of its extremely bizarre combination of characters that include a proportionally small skull and feet more akin to primitive long-neck dinosaurs.
Chilesaurus diegosuarezi is nested within the theropod group of dinosaurs, the dinosaurian group that gathers the famous meat eaters ...
If you're finding it difficult to stick to a weight-loss diet, scientists at the Howard Hughes Medical Institute's Janelia Research Campus say you can likely blame hunger-sensitive cells in your brain known as AGRP neurons. According to new experiments, these neurons are responsible for the unpleasant feelings of hunger that make snacking irresistible.
The negative emotions associated with hunger can make it hard to maintain a diet and lose weight, and these neurons help explain that struggle, says Scott Sternson, a group leader at Janelia. In an environment where food ...
Johns Hopkins scientists have discovered that neurons are risk takers: They use minor "DNA surgeries" to toggle their activity levels all day, every day. Since these activity levels are important in learning, memory and brain disorders, the researchers think their finding will shed light on a range of important questions. A summary of the study will be published online in the journal Nature Neuroscience on April 27.
"We used to think that once a cell reaches full maturation, its DNA is totally stable, including the molecular tags attached to it to control its genes and ...
Eating 3,000 mg per day of salt or more appears to have no adverse effect on blood pressure in adolescent girls, while those girls who consumed 2,400 mg per day or more of potassium had lower blood pressure at the end of adolescence, according to an article published online by JAMA Pediatrics.
The scientific community has historically believed most people in the United States consume too much salt in their diets. The current Dietary Guidelines for Americans recommends limiting sodium intake to less than 2,300 mg per day for healthy individuals between the ages of 2 and ...
Survivors of Hodgkin lymphoma appear to be at higher risk for cardiovascular diseases and both physicians and patients need to be aware of this increased risk, according to an article published online by JAMA Internal Medicine.
Hodgkin lymphoma (HL) is a curable cancer with 10-year survival rates exceeding 80 percent. Treatment for HL has been associated with increased risks for other cancers and cardiovascular diseases, and those later cardiovascular complications may be the consequence of radiotherapy and chemotherapy in HL treatment, according to the study background.
Flora ...
Researchers have developed a large-scale sequencing technique called Genome and Transcriptome Sequencing (G&T-seq) that reveals, simultaneously, the unique genome sequence of a single cell and the activity of genes within that single cell.
The study, published today in Nature Methods, has experimentally established for the first time that when a cell loses or gains a copy of a chromosome during cell division, the genes in that particular region of DNA show decreased or increased expression. While this has long been assumed by genetic researchers, it has not been seen ...
CHESTNUT HILL, MA (April 27, 2015) - Add water to a half-filled cup and the water level rises. This everyday experience reflects a positive material property of the water-cup system. But what if adding more water lowers the water level by deforming the cup? This would mean a negative compressibility.
Now, a quantum version of this phenomenon, called negative electronic compressibility (NEC), has been discovered, a team of researchers led by physicists at Boston College reports today in the online edition of the journal Nature Materials.
Physicists have long theorized ...
Reluctance to share data about personal energy use is likely to be a major obstacle when implementing 'smart' technologies designed to monitor use and support energy efficient behaviours, according to new research led by academics at The University of Nottingham.
The study, published online by the journal Nature Climate Change, found that while more than half of people quizzed would be willing to reduce their personal energy consumption, some were wary about sharing their information with third parties.
Increasing energy efficiency and encouraging flexible energy use ...
April 27, 2015 -- A new breast cancer gene has been identified in a study led by Women's College Hospital (WCH) researcher Dr. Mohammad Akbari, who is also an assistant professor with the Dalla Lana School of Public Health at the University of Toronto. The study, which was published online today in Nature Genetics, describes how mutations in a gene called RECQL are strongly linked to the onset of breast cancer in two populations of Polish and French-Canadian women.
"Our work is an exciting step in identifying all of the relevant genes that are associated with inherited ...