Quantum particles at play: Game theory elucidates the collective behavior of bosons
2015-04-28
(Press-News.org) Quantum particles behave in strange ways and are often difficult to study experimentally. Using mathematical methods drawn from game theory, physicists of Ludwig-Maximilias-Universitaet (LMU) in Munich have shown how bosons, which like to enter the same state, can form multiple groups.
When scientists explore the mysterious behavior of quantum particles, they soon reach the limits of present-day experimental research. From there on, progress is only possible with the aid of theoretical ideas. NIM investigator Professor Dr. Erwin Frey and his team at the Dept. of Statistical and Biological Physics (LMU Munich) have followed this route to study the behavior of bosons. Bosons are quantum particles that like to cluster together. But by applying methods from the mathematical field of game theory, the Munich physicists were able to explain why and under what conditions bosons form multiple groups.
Social bosons
There are two kinds of quantum particles in nature: fermions and bosons. Whether a particle is a fermion or a boson depends on its intrinsic angular momentum or spin. For fermions, the spin is always half-integer valued and the most prominent example is the electron. Bosons, on the other hand, always exhibit integer spins. Such is the case for photons, for example, but also whole atoms may be bosons. Bosons are social beasts that like to be on the same wavelength - or, as physicists put it, they like to be in the same quantum state. When bosons are cooled to a temperature of -273.15°C, close to absolute zero, they may even start to behave as a single "super-particle". The reason why that happens is that, at such low temperatures, all bosons want to settle into the lowest possible energy state.
This super-particle is called a Bose-Einstein condensate, where the term condensate denotes a group of particles that all behave in the same way. That it should be possible to create such a condensate was first proposed theoretically by Bose and Einstein in 1924. During the 1990s, experimentalists studying ultracold atomic gases eventually confirmed this long-standing prediction.
Group formation
Only recently have scientists come up with the theory that a collection of bosons should be capable of forming multiple condensates. In order for this to happen, however, the bosons need to be in an open system into which energy is periodically pumped from the outside - for example by a laser - and each boson may release energy into the environment. In the current issue of "Nature Communications", Erwin Frey and his team explain why bosons group into multiple condensates in such non-equilibrium systems.
The rules of the game
The phycisists from Munich explained the formation of multiple groups by applying one of its specialties: game theory. Researchers use this mathematical theory for a diverse range of purposes. The strength of game theory lies in its ability to explain the behavior and interactions of collectives. Each member has its own strategy - whether that "agent" be a predator stalking its prey, or a participant in the children's game rock-paper-scissors who chooses to play the "rock" strategy. Owing to its simplicity, the rock-paper-scissors game serves as one of the most prominent models in game theory, but the theory also describes more serious decision-making processes and opinion formation in groups. Now Erwin Frey and his team have shown that even the behavior of bosons can be understood in the context of game theory. And this insight has led them to the physical principle underlying the condensation of bosons into multiple states.
Order emerges with time
"Our theory is based on an intuitive concept", explains Johannes Knebel, PhD student in Frey's group. "At first, all bosons do their own thing. But because energy is allowed to flow in and out of the system, the bosons eventually group into particular quantum states, whereas the other states become depleted. Similarly, when many players with different strategies compete against each other, only the successful strategies prevail. The other strategies vanish over time. In a round-table discussion, the same dynamics may be observed. At first, everybody has a different opinion, but only a few opinions will eventually be shared by most of the debaters, and these will often continue to coexist side by side." Hence, order emerges with time. The Munich physicists formulate the evolution of order in terms of the decrease of a relative measure of entropy, which guides the collective behavior of the bosons.
From theory to experiment
The scientists are now eager to learn more about the nature of quantum systems: "A direct application of our findings is not yet at hand," says Erwin Frey. "However, it is not unusual for this kind of basic research to lead to completely unexpected discoveries, opening the door to new developments. For example, research on the collective behavior of bosons has already contributed to the understanding of superfluidity and paved the path to the development of technologies like superconductivity". The exciting question now is whether the theorists' predictions will be confirmed or disproved by experimentalists. Experiments with ultracold atomic gases, such as those being conducted in the group led by NIM investigator Prof. Immanuel Bloch (LMU Munich and Max-Planck-Institute for Quantum Optics), offer promising candidates to study bosons out of equilibrium.
INFORMATION:
ELSE PRESS RELEASES FROM THIS DATE:
2015-04-28
Silicon (Si) is the second most abundant element of the earth`s crust after oxygen. It has long been neglected by ecologists, as it is not considered an essential nutrient for plants. However, research of recent years showed that it is beneficial for the growth of many plants, including important crops such as rice, wheat and barley.
For instance, Si enhanced the resistance against pests, pathogens and abiotic stresses such as salts, drought and storms. Silicon might, thus, play a crucial role in the development of `sustainable` rice production systems with lower or ...
2015-04-28
Emory scientists have adapted an antiviral enzyme from bacteria called Cas9 into an instrument for inhibiting hepatitis C virus in human cells.
The results were published Monday April 27, 2015 in Proceedings of the National Academy of Sciences.
Cas9 is part of the CRISPR genetic defense system in bacteria, which scientists have been harnessing to edit DNA in animals, plants and even human cells. In this case, Emory researchers are using Cas9 to put a clamp on RNA, which hepatitis C virus uses for its genetic material, rather than change cells' DNA.
Although several ...
2015-04-28
Many experimental and clinical data have demonstrated that antibiotic-resistance pathogens, such as Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), may play a vital role in priming chronic inflammation. There is thus a great need to develop novel antibacterial materials, and particularly those that are less likely to lead to bacterial resistance.
Now, in a paper appearing recently in Science Bulletin, a team of scientists at the National Center for Nanoscience and Technology, China, led by Guangjun Nie and Yuliang Zhao, has designed and synthesized biocompatible ...
2015-04-28
The autonomous locomotion for a macroscopic machine remains an intriguing issue for the researchers to explore. Recently, Professor LIU Jing and his group from Tsinghua University demonstrated that as a versatile material, the liquid metal could be self-actuated when fueled with aluminum (Al) flake, and the motion thus enabled would persist for more than an hour at a quite high velocity.
Based on the previous study, the present work proposed to realize a much larger liquid metal machine, which could autonomously move and accelerate with the increase of temperature. More ...
2015-04-28
Stark disparities by race, education and literacy
Slower medication refills and access to lab results
Harder to keep doctors informed about chronic conditions
CHICAGO -- Online sites that offer secure access to one's medical record, often referred to as patient portals, are increasingly important for doctor and patient communication and routine access to health care information. But patient portals could widen the gap in health disparities among the most vulnerable patients, according to a new Northwestern Medicine study.
Patients with low health literacy, less ...
2015-04-28
University of Sydney geoscientists have helped prove that some of the ocean's underwater volcanoes did not erupt from hot spots in the Earth's mantle but instead formed from cracks or fractures in the oceanic crust.
The discovery helps explain the spectacular bend in the famous underwater range, the Hawaiian-Emperor seamount chain, where the bottom half kinks at a sixty degree angle to the east of its top half.
"There has been speculation among geoscientists for decades that some underwater volcanoes form because of fracturing," said Professor Dietmar Muller, from ...
2015-04-28
ROCHESTER, Minn. -- Herceptin has been touted as a wonder drug for women with HER2-positive breast cancer, an aggressive form of the disease that is fueled by excess production of the HER2 protein. However, not all of these patients respond to the drug, and many who do respond eventually acquire resistance.
A team of researchers led by Mayo Clinic has found a promising way to circumvent this obstacle. They identified a small site in the HER2 protein that enables it to form a molecular switch that sets off a cascade of events that turn normal cells cancerous. The researchers ...
2015-04-28
Westport, CT, April 28, 2015 - In a time when the FDA and state attorneys general are questioning the ingredients and claims of dietary supplements, Americans are looking for assurance that any medicine they use will really work. Infirst Healthcare USA is taking steps, through clinical testing, to ensure that its over-the-counter liquid cold and cough relief medicines, made with FDA-authorized ingredients, are truly effective.
Newly published in the International Journal of Clinical Pharmacy (February 2015), the study - conducted by leading cough researcher, Peter Dicpinigaitis, ...
2015-04-28
The American Geriatrics Society (AGS) today released updates to several of its recommendations for the ABIM Foundation's Choosing Wisely® campaign, which raises professional and public awareness about treatments and tests to question and discuss because they may lack efficacy or cause potential harm. The AGS's updates reflect an expert review of new research on several important conditions impacting older adults, including agitation, certain types of cancer, delirium, dementia, diabetes, insomnia, unintended weight loss, and certain other health concerns that may warrant ...
2015-04-28
For reef-building corals, sponges do not make good neighbors. Aggressive competitors for space, sponges use toxins, mucus, shading, and smothering to kill adjacent coral colonies and then grow on their skeletons. A recent survey of coral reefs across the Caribbean shows that overfishing removes the predators of sponges, greatly increasing the threat of fast-growing sponges to an already diminished population of corals.
A research team headed by Dr. Joseph Pawlik at UNC Wilmington surveyed reefs from 12 countries across the Caribbean, comparing 25 sites where fish abundance ...
LAST 30 PRESS RELEASES:
[Press-News.org] Quantum particles at play: Game theory elucidates the collective behavior of bosons