Light in sight: a step towards a potential therapy for acquired blindness
2015-05-07
(Press-News.org) Hereditary blindness caused by a progressive degeneration of the light-sensing cells in the eye, the photoreceptors, affects millions of people worldwide. Although the light-sensing cells are lost, cells in deeper layers of the retina, which normally cannot sense light, remain intact. A promising new therapeutic approach based on a technology termed "optogenetics" is to introduce light-sensing proteins into these surviving retinal cells, turning them into "replacement photoreceptors" and thereby restoring vision. However, several factors limit the feasibility of a clinical optogenetic therapy using traditional light-sensitive proteins, as they require unnaturally high and potentially harmful light intensities and employ a foreign signaling mechanism within the target retinal cells.
New research publishing May 7th in the Open Access journal PLOS Biology from van Wyk and colleagues demonstrates how optogenetic proteins can be tailored to bring this promising technology closer to medical application. "We were asking the question, 'Can we design light-activatable proteins that gate specific signaling pathways in specific cells?', in other words, can the natural signaling pathways of the target cells be retained and just modified in a way to be turned on by light instead of a neurotransmitter released from a preceding neuron?" says Dr. Sonja Kleinlogel, corresponding author of the paper (whose research group is based at the University of Berne, Switzerland). The aim of molecular engineering was to achieve maximal compatibility with native signaling whilst retaining all the advantages of traditional optogenetic proteins, such as fast kinetics and resistance to bleaching by light.
The novel light-sensing protein, termed Opto-mGluR6, is a chimeric protein composed of the light-sensing domains of the retinal photopigment melanopsin and the ON-bipolar cell-specific metabotropic glutamate receptor mGluR6, which is naturally activated by glutamate released from the photoreceptors and amplifies the incoming signal through a coupled intracellular enzymatic pathway. Unlike rhodopsin, for example, the "light antenna" of melanopsin is resistant to bleaching. In other words, the response strength of Opto-mGluR6 never attenuates, no matter how often and hard the protein is hit by light. Moreover, since Opto-mGluR6 is a chimeric protein consisting of two "local" retinal proteins it is also likely to be "invisible" to the immune system, another improvement over traditional optogenetic proteins.
In their study van Wyk and colleagues targeted the retinal ON-bipolar cells, which naturally receive direct input from the photoreceptors. Targeting the surviving cells at the top end of the visual cascade has the advantage that signal computation of the retina is maximally utilized. Turning the native chemical receptor (mGluR6) into a light-activated receptor ensures conservation of native signaling within the ON-bipolar cells, conferring high light-sensitivity and fast "normal" responsiveness. In their study they show proof-of-principle that mice suffering from Retinitis pigmentosa can be treated to regain daylight vision. "The new therapy can potentially restore sight in patients suffering from any kind of photoreceptor degeneration" says Dr. Kleinlogel, "for example also those suffering from severe forms of age-related macular degeneration, a very common disease that affects to some degree about one in every 10 people over the age of 65".
"The major improvement of the new approach is that patients will be able to see under normal daylight conditions without the need for light intensifiers or image converter goggles" Dr. Kleinlogel further notes "and retaining the integrity of the intracellular enzymatic cascade through which native mGluR6 acts ensures consistency of the visual signal, as the enzymatic cascade is intricately modulated at multiple levels".
The mGluR6 receptor of ON-bipolar cells belongs to the large family of so-called G-protein-coupled transmembrane receptors (GPCRs). The novel principle of engineering bleach-resistant chimeric Opto-GPCRs opens a whole palette of new possibilities. For example, as GPCRs are prime targets for pharmaceutical interventions, Opto-GPCRs could potentially be used to treat conditions such as pain, depression and epilepsy.
INFORMATION:
Please mention PLOS Biology as the source for this article and include the links below in your coverage to take readers to the online, open access articles.
All works published in PLOS Biology are open access, which means that everything is immediately and freely available. Use this URL in your coverage to provide readers access to the paper upon publication:
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.pbio.1002143
Contact:
Dr Sonja Kleinlogel
University of Bern, Switzerland
kleinlogel@pyl.unibe.ch
Citation:
van Wyk M, Pielecka-Fortuna J, Löwel S, Kleinlogel S (2015) Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool. PLoS Biol 13(5): e1002143. doi:10.1371/journal.pbio.1002143
Funding:
This work was supported by sponsorship from the Haag-Streit Holding AG (HSH: http://www. haag-streit.com) and grants from the Swiss National Science Foundation (http://www.snf.ch, 31003A_152807/ 1), the Commission for Technology and Innovation of Switzerland (http://www.kti.admin.ch, 14341.1 PFLS-LS), the Federal Ministry of Education and Research of Germany (http://www.bmbf.de, 01GQ0921 and 01GQ0810), the Deutsche Forschungsgemeinschaft (http://www.dfg.de) through the Collaborative Research Center 889 to SL (Project B5) and an Alexander von Humboldt Research Fellowship for Postdoctoral Researchers to JPF. The funders had no role in study design, data collection and analysis, preparation of the manuscript or decision to publish.
Competing Interests:
SK and MvW are shareholders of the Haag-Streit Medtech AG, and SK is a board member of the company.
ELSE PRESS RELEASES FROM THIS DATE:
2015-05-07
PRINCETON, N.J.--The measles virus is known to cast a deadly shadow upon children by temporarily suppressing their immune systems. While this vulnerability was previously thought to have lasted a month or two, a new study shows that children may actually live in the immunological shadow of measles for up to three years - leaving them highly susceptible to a host of other deadly diseases.
Published in the journal Science, the study, led by researchers from Princeton University's Woodrow Wilson School of Public and International Affairs and Department of Ecology and Evolutionary ...
2015-05-07
This news release is available in Spanish. Although the genetic blueprint of every cell is the same, each cell has the potential to become specific for a tissue or organ by controlling its gene expression. Thus, every cell "reads" or "switches on" a particular set of genes according to whether it should become a skin, heart, or liver cell. Launched by the National Institutes of Health (NIH) in 2010, the GTEx Project aims to create a reference database and tissue bank for scientists to study how genomic variants affect gene activity and disease susceptibility.
Following ...
2015-05-07
CAMBRIDGE, Mass--Researchers have succeeded in creating a new "whispering gallery" effect for electrons in a sheet of graphene -- making it possible to precisely control a region that reflects electrons within the material. They say the accomplishment could provide a basic building block for new kinds of electronic lenses, as well as quantum-based devices that combine electronics and optics.
The new system uses a needle-like probe that forms the basis of present-day scanning tunneling microscopes (STM), enabling control of both the location and the size of the reflecting ...
2015-05-07
For years, scientists have been puzzled by the presence of short stretches of genetic material floating inside a variety of cells, ranging from bacteria to mammals, including humans. These fragments are pieces of the genetic instructions cells use to make proteins, but are too short a length to serve their usual purpose. Reporting in this week's Cell, researchers at Rockefeller have discovered a major clue to the role these fragments play in the body -- and in the process, may have opened up a new frontier in the fight against breast cancer.
Specifically, Sohail Tavazoie ...
2015-05-07
Every inch of our body, inside and out, is oozing with bacteria. In fact, the human body carries 10 times the number of bacterial cells as human cells. Many are our friends, helping us digest food and fight off infections, for instance. But much about these abundant organisms, upon which our life depends, remains mysterious. In research reported May 7 in Cell, scientists at Rockefeller finally crack the code of a fundamental process bacteria use to defend themselves against invaders.
For years, researchers have puzzled over conflicting results about the workings of a ...
2015-05-07
EAST LANSING, Mich. - Much like a finger leaves its own unique print to help identify a person, researchers are now discovering that skull fractures leave certain signatures that can help investigators better determine what caused the injury.
Implications from the Michigan State University research could help with the determination of truth in child abuse cases, potentially resulting in very different outcomes.
Until now, multiple skull fractures meant several points of impact to the head and often were thought to suggest child abuse.
Roger Haut, a University Distinguished ...
2015-05-07
PULLMAN, Wash.--Washington State University researchers say the popularity of bamboo landscaping could increase the spread of hantavirus, with the plant's prolific seed production creating a population boom among seed-eating deer mice that carry the disease.
Richard Mack, an ecologist in WSU's School of Biological Sciences, details how an outbreak could happen in a recent issue of the online journal PLOS One.
Bamboo plants are growing in popularity, judging by the increased number of species listed by the American Bamboo Society. Some grow in relatively self-contained ...
2015-05-07
WASHINGTON -- Can a true, robust global health framework be created to help prevent tragedies like Ebola while at the same time allow countries to meet everyday health needs?
Georgetown University global health and law experts say it can be done, and in a special issue of "The Lancet" focusing on global health security, they propose specific priorities to transform a fragmented health system into a "purposeful, organized" framework with national health systems at its foundation and an empowered World Health Organization at its apex.
"The Ebola epidemic in west Africa ...
2015-05-07
The west African Ebola epidemic has rekindled interest in global health security, but it has also highlighted a troubling lack of political commitment to public health, and it is far from clear whether the crisis will be enough to rejuvenate global health security, say leading global health experts writing in The Lancet.
Through a series of essays [1], the review, which is published as part of a special issue on global health security, explores different perspectives on the wider lessons that can be drawn from the outbreak, including how it has demonstrated the importance ...
2015-05-07
Your genes may influence how sensitive you are to emotional information, according to new research by a UBC neuroscientist. The study, recently published in The Journal of Neuroscience, found that carriers of a certain genetic variation perceived positive and negative images more vividly, and had heightened activity in certain brain regions.
"People really do see the world differently," says lead author Rebecca Todd, a professor in UBC's Department of Psychology. "For people with this gene variation, the emotionally relevant things in the world stand out much more."
The ...
LAST 30 PRESS RELEASES:
[Press-News.org] Light in sight: a step towards a potential therapy for acquired blindness