PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Near-atomic resolution of protein structure by electron microscopy holds promise

Near-atomic resolution of protein structure by electron microscopy holds promise
2015-05-07
(Press-News.org) A new study shows that it is possible to use an imaging technique called cryo-electron microscopy (cryo-EM) to view, in near-atomic detail, the architecture of a metabolic enzyme bound to a drug that blocks its activity. This advance provides a new path for solving molecular structures that may revolutionize drug development, noted the researchers.

The protein imaged in this study was a small bacterial enzyme called beta-galactosidase; the drug to which it was bound is an inhibitor called phenylethyl-beta-D-thiogalactopyranoside (PETG), which fits into a pocket in the enzyme. Enzymes are typically proteins that act to catalyze biochemical reactions in the cell. Understanding what an enzyme looks like, both with and without a drug bound to it, allows scientists to design new drugs that can either block that enzyme's function (if the function is responsible for a disease), or enhance its activity (if lack of activity is causing a problem).

The study appeared online May 7, 2015, in Science Express. Sriram Subramaniam, Ph.D., of the National Cancer Institute's (NCI) Center for Cancer Research, led the research. NCI is part of the National Institutes of Health.

"This represents a new era in imaging of proteins in humans with immense implications for drug design," said NIH Director Francis S. Collins, M.D., Ph.D. "This near-atomic level of imaging provides detailed information about the keys that unlock cellular processes." Drug development efforts often involve mapping contacts between small molecules and their binding sites on proteins. These mappings require the highest possible resolutions so that the shape of the protein chain can be traced and the hydrogen bonds between the protein and the small molecules it interacts with can be discerned.

In this study, the researchers were able to visualize beta-galactosidase at a resolution of 2.2 angstroms (or Å -- about a billionth of a meter in size), which is comparable to the level of detail that has thus far been obtained only by using X-ray crystallography. At these high resolutions, there is enough information in the structure to reliably assist drug design and development efforts.

To determine structures by cryo-EM, protein suspensions are flash-frozen at liquid nitrogen temperatures (-196°C to -210°C , or -320°F to -346°F) so the water around the protein molecules stays liquid-like. The suspensions are then imaged with electrons to obtain molecular images that are averaged together to discern a three-dimensional (3D) protein structure.

"The fact that cryo-EM technology allows us to image a relatively small protein at high resolution in a near-native environment, and knowing that the structure hasn't been changed by crystallization, that's a game-changer," said Dr. Subramaniam.

In the study, using about 40,000 molecular images, the researchers were able to compute a 2.2 Å resolution map of the structure of beta-galactosidase bound to PETG. This map not only allowed the researchers to determine the positioning of PETG in the binding pocket but also enabled them to pick out individual ions and water molecules within the structure and to visualize in great detail the arrangement of the amino acids that make up the protein.

Dr. Subramaniam and colleagues have recently used cryo-EM to understand the functioning of a variety of medically important molecular machines, such as the envelope glycoproteins on HIV and glutamate receptors found in brain cells. Their new finding, however, represents the highest resolution that they or others have achieved to date for a structure determined by cryo-EM.

"Cryo-EM is positioned to become an even more useful tool in structural biology and cancer drug development," said Douglas Lowy, M.D., acting director, NCI. "Even for proteins that are not amenable to crystallization, it could enable determination of their 3D structures at high resolution."

INFORMATION:

Reference: Bartesaghi, A., et al., 2015. 2.2 Angstrom resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science Express. Online May 7, 2015. DOI: http://www.sciencemag.org/lookup/doi/10.1126/science.aab1576.

The National Cancer Institute leads the National Cancer Program and the NIH's efforts to dramatically reduce the prevalence of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI website at http://www.cancer.gov or call NCI's Cancer Information Service at 1-800-4-CANCER.


[Attachments] See images for this press release:
Near-atomic resolution of protein structure by electron microscopy holds promise Near-atomic resolution of protein structure by electron microscopy holds promise 2 Near-atomic resolution of protein structure by electron microscopy holds promise 3

ELSE PRESS RELEASES FROM THIS DATE:

Cells amplify messenger RNA levels to set protein levels

2015-05-07
Messenger RNA (mRNA) levels dictate most differences protein levels in fast-growing cells when analyzed using statistical methods that account for noise in the data, according to a new study by researchers from the University of Chicago and Harvard University. The research, published May 7, 2015 in the journal PLOS Genetics, counters widely reported studies arguing that the correlation between mRNA transcript levels and protein levels is relatively low, and that processes acting after mRNA transcription override mRNA levels. Instead, the authors argue, these conclusions ...

Malaria parasite's essential doorway into red blood cells illuminated

2015-05-07
Boston, MA -- Researchers at Harvard T. H. Chan School of Public Health and the Broad Institute have identified a protein on the surface of human red blood cells that serves as an essential entry point for invasion by the malaria parasite. The presence of this protein, called CD55, was found to be critical to the Plasmodium falciparum parasite's ability to attach itself to the red blood cell surface during invasion. This discovery opens up a promising new avenue for the development of therapies to treat and prevent malaria. "Plasmodium falciparum malaria parasites have ...

Light in sight: a step towards a potential therapy for acquired blindness

2015-05-07
Hereditary blindness caused by a progressive degeneration of the light-sensing cells in the eye, the photoreceptors, affects millions of people worldwide. Although the light-sensing cells are lost, cells in deeper layers of the retina, which normally cannot sense light, remain intact. A promising new therapeutic approach based on a technology termed "optogenetics" is to introduce light-sensing proteins into these surviving retinal cells, turning them into "replacement photoreceptors" and thereby restoring vision. However, several factors limit the feasibility of a clinical ...

A deadly shadow: Measles may weaken immune system up to 3 years

2015-05-07
PRINCETON, N.J.--The measles virus is known to cast a deadly shadow upon children by temporarily suppressing their immune systems. While this vulnerability was previously thought to have lasted a month or two, a new study shows that children may actually live in the immunological shadow of measles for up to three years - leaving them highly susceptible to a host of other deadly diseases. Published in the journal Science, the study, led by researchers from Princeton University's Woodrow Wilson School of Public and International Affairs and Department of Ecology and Evolutionary ...

Gene expression is key to understanding differences between individuals and disease susceptibility

2015-05-07
This news release is available in Spanish. Although the genetic blueprint of every cell is the same, each cell has the potential to become specific for a tissue or organ by controlling its gene expression. Thus, every cell "reads" or "switches on" a particular set of genes according to whether it should become a skin, heart, or liver cell. Launched by the National Institutes of Health (NIH) in 2010, the GTEx Project aims to create a reference database and tissue bank for scientists to study how genomic variants affect gene activity and disease susceptibility. Following ...

Electrons corralled using new quantum tool

2015-05-07
CAMBRIDGE, Mass--Researchers have succeeded in creating a new "whispering gallery" effect for electrons in a sheet of graphene -- making it possible to precisely control a region that reflects electrons within the material. They say the accomplishment could provide a basic building block for new kinds of electronic lenses, as well as quantum-based devices that combine electronics and optics. The new system uses a needle-like probe that forms the basis of present-day scanning tunneling microscopes (STM), enabling control of both the location and the size of the reflecting ...

Fragments of tRNA suggest a novel mechanism for cancer progression

2015-05-07
For years, scientists have been puzzled by the presence of short stretches of genetic material floating inside a variety of cells, ranging from bacteria to mammals, including humans. These fragments are pieces of the genetic instructions cells use to make proteins, but are too short a length to serve their usual purpose. Reporting in this week's Cell, researchers at Rockefeller have discovered a major clue to the role these fragments play in the body -- and in the process, may have opened up a new frontier in the fight against breast cancer. Specifically, Sohail Tavazoie ...

Rockefeller scientists resolve debate over how many bacteria fight off invaders

2015-05-07
Every inch of our body, inside and out, is oozing with bacteria. In fact, the human body carries 10 times the number of bacterial cells as human cells. Many are our friends, helping us digest food and fight off infections, for instance. But much about these abundant organisms, upon which our life depends, remains mysterious. In research reported May 7 in Cell, scientists at Rockefeller finally crack the code of a fundamental process bacteria use to defend themselves against invaders. For years, researchers have puzzled over conflicting results about the workings of a ...

'Fracture' prints, not fingerprints, help solve child abuse cases

Fracture prints, not fingerprints, help solve child abuse cases
2015-05-07
EAST LANSING, Mich. - Much like a finger leaves its own unique print to help identify a person, researchers are now discovering that skull fractures leave certain signatures that can help investigators better determine what caused the injury. Implications from the Michigan State University research could help with the determination of truth in child abuse cases, potentially resulting in very different outcomes. Until now, multiple skull fractures meant several points of impact to the head and often were thought to suggest child abuse. Roger Haut, a University Distinguished ...

WSU ecologist warns of bamboo fueling spread of hantavirus

2015-05-07
PULLMAN, Wash.--Washington State University researchers say the popularity of bamboo landscaping could increase the spread of hantavirus, with the plant's prolific seed production creating a population boom among seed-eating deer mice that carry the disease. Richard Mack, an ecologist in WSU's School of Biological Sciences, details how an outbreak could happen in a recent issue of the online journal PLOS One. Bamboo plants are growing in popularity, judging by the increased number of species listed by the American Bamboo Society. Some grow in relatively self-contained ...

LAST 30 PRESS RELEASES:

For platforms using gig workers, bonuses can be a double-edged sword

Chang'e-6 samples reveal first evidence of impact-formed hematite and maghemite on the Moon

New study reveals key role of inflammasome in male-biased periodontitis

MD Anderson publicly launches $2.5 billion philanthropic campaign, Only Possible Here, The Campaign to End Cancer

Donors enable record pool of TPDA Awards to Neuroscience 2025

Society for Neuroscience announces Gold Sponsors of Neuroscience 2025

The world’s oldest RNA extracted from woolly mammoth

Research alert: When life imitates art: Google searches for anxiety drug spike during run of The White Lotus TV show

Reading a quantum clock costs more energy than running it, study finds

Early MMR vaccine adoption during the 2025 Texas measles outbreak

Traces of bacteria inside brain tumors may affect tumor behavior

Hypertension affects the brain much earlier than expected

Nonlinear association between systemic immune-inflammation index and in-hospital mortality in critically ill patients with chronic obstructive pulmonary disease and atrial fibrillation: a cross-sectio

Drift logs destroying intertidal ecosystems

New test could speed detection of three serious regional fungal infections

New research on AI as a diagnostic tool to be featured at AMP 2025

New test could allow for more accurate Lyme disease diagnosis

New genetic tool reveals chromosome changes linked to pregnancy loss

New research in blood cancer diagnostics to be featured at AMP 2025

Analysis reveals that imaging is overused in diagnosing and managing the facial paralysis disorder Bell’s palsy

Research progress on leptin in metabolic dysfunction-associated fatty liver disease

Fondazione Telethon announces CHMP positive opinion for Waskyra™, a gene therapy for the treatment of Wiskott-Aldrich syndrome (WAS)

Vaccine Innovation Center, Korea University College of Medicine hosts an invited training program for Ethiopian Health Ministry officials

FAU study finds small group counseling helps children thrive at school

Research team uncovers overlooked layer of DNA that may shape disease risk

Study by Incheon National University could transform skin cancer detection with near-perfect accuracy

New study reveals how brain fluid flow predicts survival in glioblastoma

Cesarean delivery: the technique used for closing the uterus must be reconsidered

The “Great Unified Microscope” can see both micro and nanoscale structures

A new theory of molecular evolution

[Press-News.org] Near-atomic resolution of protein structure by electron microscopy holds promise