(Press-News.org) TALLAHASSEE, Fla. -- When it comes to the three-horned dinosaur called the Triceratops, science is showing the ancient creatures might have been a little more complex than we thought.
In fact, their teeth were far more intricate than any reptile or mammal living today.
Biological Science Professor Gregory Erickson and a multiuniversity team composed of engineers and paleontologists content that the Triceratops developed teeth that could finely slice through dense material giving them a richer and more varied diet than modern-day reptiles.
Erickson and the team outlined the findings of their study in the journal Science Advances.
Today, reptilian teeth are constructed in such a way that they are used mostly for seizing food -- whether plant or animal -- and then crushing it. The teeth do not occlude -- or come together -- like those of mammals. In essence they can't chew. The teeth of most herbivorous mammals self wear with use to create complex file surfaces for mincing plants.
"It's just been assumed that dinosaurs didn't do things like mammals, but in some ways, they're actually more complex," Erickson said.
Erickson, who has been studying the evolution of dinosaurs for years, became interested in looking at dinosaurs' teeth several years ago and suspected that they had some unique properties. But, the technology to really discover what they were capable of did not exist.
Fast-forward a few years and engineer Brandon Krick entered the picture.
Krick is an assistant professor of mechanical engineering at Lehigh University and specializes in a relatively new area of materials science called tribology. Tribology is the science of how surfaces of materials interact while in motion.
The two of them, accompanied by scientists at University of Florida, University of Pennsylvania and the American Museum of Natural History, set out to find out what exactly these teeth were made of and how they worked.
Erickson had access to the teeth of Triceratops from museum specimens collected around North America. So, he began by cutting up a bunch of teeth to get a look at the interior.
He discovered that Triceratops teeth were made of five layers of tissue. In contrast, herbivorous horse and bison teeth, once considered the most complex ever to evolve, have four layers of tissue. Crocodiles and other reptiles have just two.
"Each of those tissues does something," Erickson said. "They're not just there for looks."
While Erickson examined the tissue, he also sent samples to Krick to determine what each did and how they worked in concert to allow these animals to slice plants. Krick was able to mimic how plants moved across the teeth by scratching the teeth and measuring the tissue wear rates.
What Krick and his team of engineers, including Lehigh graduate student Mike Sidebottom, found was that the material properties of the teeth were remarkably preserved in 66 million year old teeth.
"If you took these dinosaurs' teeth and put them in a cow for example, they would work," Erickson said.
A sophisticated three-dimensional model was developed to show how each tissue wore with use in a strategic manner to create a complex surface with a fuller (a recessed area in the middle, much like those seen in fighting knives and swords) on each tooth. This served to reduce friction during biting and promote efficient feeding.
The 3D wear model developed for this project is inspiring new engineering techniques that can be used for industrial and commercial applications.
"Paleontologists challenged us with an interesting engineering problem, and now, we have a wear model that can be used to design material systems with optimized wear properties and surface features for many applications," Krick said.
The question that remains is how prevalent complex dental structure was among dinosaurs and other reptiles. Krick and Erickson intend to explore this further by examining other reptilian dental records and structures.
INFORMATION:
This work was funded by the National Science Foundation.
As the ocean absorbs atmospheric carbon dioxide (CO2) released by the burning of fossil fuels, its chemistry is changing. The CO2 reacts with water molecules, lowering the ocean's pH in a process known as ocean acidification. This process also removes carbonate ions, an essential ingredient needed by corals and other organisms to build their skeletons and shells.
Will some corals be able to adapt to these rapidly changing conditions? If so, what will these coral reefs look like as the oceans become more acidic?
In addition to laboratory experiments that simulate future ...
PHOENIX, Ariz. -- June 5, 2015 -- Staphylococcus aureus -- better known as Staph -- is a common inhabitant of the human nose, and people who carry it are at increased risk for dangerous Staph infections.
However, it may be possible to exclude these unwelcome guests using other more benign bacteria, according to a new study led by scientists representing the Translational Genomics Research Institute (TGen), the Statens Serum Institut, and Milken Institute School of Public Health (SPH) at the George Washington University.
The study, published today in the AAAS journal ...
BOSTON (June 5, 2015) - A daily sugar-sweetened beverage habit may increase the risk for non-alcoholic fatty liver disease (NAFLD), researchers from the Jean Mayer USDA Human Nutrition Research Center on Aging (USDA HRNCA) at Tufts University report today in the Journal of Hepatology.
The researchers analyzed 2,634 self-reported dietary questionnaires from mostly Caucasian middle-aged men and women enrolled in the National Heart Lunch and Blood Institute (NHLBI) Framingham Heart Study's Offspring and Third Generation cohorts. The sugar-sweetened beverages on the questionnaires ...
BOSTON (June 5, 2015) -- A joint position statement outlining when, how and what type of Diabetes Self-Management Education and Support (DSME/S) should be delivered to patients is being released today at the American Diabetes Association's 75th Scientific Sessions. The statement is also being published online concurrently in Diabetes Care, The Diabetes Educator and the Journal of the Academy of Nutrition and Dietetics.
The statement -- written by representatives of the American Diabetes Association, American Association of Diabetes Educators (AADE) and the Academy of ...
Scientists have defined the smallest, most accurate thermometer allowed by the laws of physics -- one that could detect the smallest fluctuations in microscopic regions, such as the variations within a biological cell.
The research, involving mathematicians at The University of Nottingham and published in the latest edition of the journal Physical Review Letters, focuses on the sensitivity of thermometers made up of just a handful of atoms and small enough to exhibit distinctive 'quantum' features.
Devising sensitive and practical nano-scale thermometers would represent ...
Honest behavior is much like sticking to a diet. When facing an ethical dilemma, being aware of the temptation before it happens and thinking about the long-term consequences of misbehaving could help more people do the right thing, according to a new study.
The study, "Anticipating and Resisting the Temptation to Behave Unethically," by University of Chicago Booth School of Business Behavioral Science and Marketing Professor Ayelet Fishbach and Rutgers Business School Assistant Professor Oliver J. Sheldon, was recently published in the Personality and Social Psychology ...
This news release is available in German. Most magnetic materials have a structure that is somewhat more complicated than a commercially available domestic magnet: they not only have a north and south pole, but a variety of sectors, often only a few nanometres in size, in each of which the magnetic axis points in a different direction. These sectors are referred to as domains. Over the past few years, Manfred Fiebig, Professor for Multifunctional Ferroics at ETH Zurich, has been studying the walls between adjoining domains in certain materials. "The inner workings of ...
When a woman becomes pregnant or is planning a pregnancy, one of her first decisions is where she will deliver her baby. With options ranging from birthing centers to small community hospitals to regional health networks to academic medical centers, the decision can be confusing.
The question, especially for a woman with a low-risk pregnancy, is "What is the likelihood that something could go wrong?"
Research on this topic has been published in the American Journal of Obstetrics & Gynecology. The research was conducted by Valery A. Danilack, MPH, PhD, postdoctoral ...
Researchers from the UAB and the University of Nottingham, in an article published today in Physical Review Letters, have fixed the limits of thermometry, i.e., they have established the smallest possible fluctuation in temperature which can be measured. The researchers have studied the sensitivity of thermometers created with a handful of atoms, small enough to be capable of showing typical quantum-style behaviours.
The researchers characterised these types of probes in detail, devices which could provide an estimation of the temperature with a never before seen precision. ...
June 5, 2015 - Young infants who can "resettle" themselves after waking up are more likely to sleep for prolonged periods at night, according to a video study in the June Journal of Developmental & Behavioral Pediatrics, the official journal of the Society for Developmental and Behavioral Pediatrics. The journal is published by Wolters Kluwer.
"Infants are capable of resettling themselves back to sleep by three months of age," according to the study by Ian St James-Roberts and colleagues of the University of London. They add, "Both autonomous resettling and prolonged ...