(Press-News.org) (BOSTON) - Traditional robots are made of components and rigid materials like you might see on an automotive assembly line - metal and hydraulic parts, harshly rigid, and extremely strong. But away from the assembly line, for robots to harmoniously assist humans in close-range tasks scientists are designing new classes of soft-bodied robots. Yet one of the challenges is integrating soft materials with requisite rigid components that power and control the robot's body. At the interface of these materials, stresses concentrate and structural integrity can be compromised, which often results in mechanical failure.
But now, by understanding how organisms solve this problem by self-assembling their bodies in a way that produces a gradual transitioning from hard to soft parts, a team of Wyss Institute researchers and their collaborators have been able to use a novel three-dimensional printing strategy to construct entire robots in a single build that incorporate this biodesign principle. The strategy permits construction of highly complex and robust structures that can't be achieved using conventional nuts and bolts manufacturing. A proof-of-concept prototype- a soft-bodied autonomous jumping robot reported in the July 10 issue of Science - was 3D printed layer upon layer to ease the transition from its rigid core components to a soft outer exterior using a series of nine sequential material gradients.
"We leveraged additive manufacturing to holistically create, in one uninterrupted 3D printing session, a single body fabricated with nine sequential layers of material, increasing in stiffness from rigid to soft towards the outer body," said the study's co-senior author Robert Wood, Ph.D, who is a Core Faculty member and co-leader of the Bioinspired Robotics Platform at the Wyss Institute for Biologically Inspired Engineering at Harvard University, the Charles River Professor of Engineering and Applied Sciences at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and Founder of the Harvard Microrobotics Lab. "By employing a gradient material strategy, we have greatly reduced stress concentrations typically found at the interfaces of soft and rigid components which has resulted in an extremely durable robot."
With the expertise of study co-author and Wyss Institute Senior Research Scientist James Weaver, Ph.D., who is a leader in high-resolution, multi-material 3D printing, the team was able to 3D print the jumping robot's body in one single 3D printing session. Usually, 3D printing is only used to fabricate parts of robots, and is only very recently being used to print entire functional robots. And this jumping robot is the first entire robot to ever be 3D printed using a gradient rigid-to-soft layering strategy.
The autonomous robot is powered - without the use of wires or tethers - by an explosive actuator on its body that harnesses the combustion energy of butane and oxygen. It utilizes three tilting pneumatic legs to control the direction of its jumps, and its soft, squishy exterior reduces the risk of damage upon landings, makes it safer for humans to operate in close proximity, and increases the robot's overall lifespan. It was developed based on previous combustion-based robots designed by co-senior author George Whitesides, Ph.D., who is a Wyss Institute Core Faculty member and the Woodford L. and Ann A. Flowers University Professor at Harvard University.
"Traditional molding-based manufacturing would be impractical to achieve a functionally-graded robot, you would need a new mold every time you change the robot's design. 3D printing manufacturing is ideal for fabricating the complex and layered body exhibited by our jumping robot," said Nicholas Bartlett, a co-first author on the study and a graduate researcher in bioinspired robotics at the Wyss Institute and Harvard SEAS.
As compared to traditional mold manufacturing, which uses fixed molds, the nature of 3D printing facilitates rapid design iterations with utmost ease, allowing faster prototyping throughout development.
"This new breakthrough demonstrates the power of combining insights into nature's innovations with the most advanced man-made technological advances - in this case 3D printing technologies - when trying to overcome technical limitations that currently hold back a field," said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences. "This ability to fabricate unitary soft robots composed of gradient materials that emulate natural stiffness gradients of living structures paves the way for mass fabrication of robots that can integrate seamlessly with people, whether in our homes, at work or in operating rooms in the future."
INFORMATION:
Former Wyss Institute Postdoctoral Fellow Michael Tolley, Ph.D., currently Assistant Professor of Mechanical and Aerospace Engineering of University of California, San Diego, is a co-first author on the study. In addition, former Wyss Institute and Harvard SEAS Postdoctoral Fellow Bobak Mosadegh, Ph.D., currently Assistant Professor of Biomedical Engineering in Radiology at Weill Cornell Medical College, is a co-author; Johannes T.B. Overvelde, a Ph.D. candidate at Harvard SEAS, is a co-author; and Katia Bertoldi, Ph.D., who is the John L. Loeb Associate Professor of Natural Sciences at Harvard SEAS, is a co-senior author.
This research was funded by the National Science Foundation and the Wyss Institute for Biologically Inspired Engineering at Harvard University.
IMAGES AND VIDEO AVAILABLE
The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new start-ups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana-Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, and Charité - Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.
The middle classes from developing countries are more susceptible than western Caucasians to obesity, type 2 diabetes and cardiovascular disease in today's changing environment. New research published today in Cell Metabolism from the University of Sydney in Australia, the National Centre for Cell Science and the DYP Medical College in Pune, India reveals this may be a result of the nutrition endured by their ancestors.
The findings in the paper titled Multigenerational Undernutrition and Diabetes could explain projections that more than 70 per cent of the global burden ...
ORLANDO, FL - While multidirectional instability of the shoulder (MDI) has been traditionally treated without surgery, research presented today at the American Orthopaedic Society for Sports Medicine's (AOSSM) Annual Meeting in Orlando, FL, shows surgery is also effective for this type of dislocation.
"We examined 41 athletes who received arthroscopic surgery for MDI, and noted 73% returned to play at equal or only slightly lower level than before the injury," commented M. Brett Raynor, MD, lead author from Steadman Philippon Research Institute Program. "Our study group ...
ORLANDO, FL - Athletes who suffer a shoulder instability injury may return to play more successfully after being treated arthroscopically compared to nonoperative treatment, say researchers presenting their work today at the American Orthopaedic Society for Sports Medicine's (AOSSM) Annual Meeting.
"Our research highlights that collegiate collision athletes with in-season shoulder instability injuries are more likely to return to sport successfully the following season, if they undergo arthroscopic stabilization compared to nonoperative treatment," said lead author Jon ...
ORLANDO, FL - While athletes undergoing anterior cruciate ligament (ACL) surgery often have an additional meniscus injury, treating these tears at the same time may not be necessary. Research presented today by the MOON Knee Group at the American Orthopaedic Society for Sports Medicine's (AOSSM) Annual Meeting in Orlando shows positive results for meniscal tears that were deemed stable and left alone at the time of ACL reconstruction.
"We examined 194 patients with meniscus tears who did not receive treatment at the time of ACL surgery," noted lead author Kyle R. Duchman, ...
Chronic obstructive pulmonary disease (COPD) is one of most common causes of death in the world today - active smoking accounting for approx. 85% of all cases. Yet ground-breaking research from the University of Copenhagen indicates that accelerated decline of lung function is not a prerequisite for COPD.
It has been generally assumed that all people suffering COPD experience an accelerated decline of lung function, which is why so many large studies have focused on reducing this decline. However, this new study reveals that this is the case for only approx. 50% of patients ...
CANCER RESEARCH UK scientists have found that 'jumping genes' may add to the genetic chaos behind more than three-quarters of oesophageal cancer cases, according to research* published in BMC Genomics today (Friday).
The scientists, from the University of Cambridge, used cutting-edge technology that can read DNA to study the genes of 43 oesophageal tumour and blood samples to discover how much these mobile genetic sequences travel.
'Jumping genes', called L1 elements, can uproot themselves and move to new areas in the DNA, sometimes accidentally moving into genes that ...
CHILDREN with a rare type of cancer called Wilms' tumour who are at low risk of relapsing can now be given less intensive treatment, avoiding a type of chemotherapy that can cause irreversible heart problems in later life.
The move follows the results of a Cancer Research UK trial, published in the Lancet* today (Thursday), showing that the drug doxorubicin can be safely omitted from treatment without affecting patients' chances of survival.
Wilms' tumour is a type of kidney cancer that affects around 80 children a year in the UK, most under the age of seven. Until now, ...
Strong relationships with other family members can help raise self-esteem and reduce anxiety for some young people who grow up in homes affected by parental domestic violence.
This is the finding of a study by Doctoral student Catherine Naughton and colleagues from the University of Limerick that will be presented today, Friday 10 July 2015, at the British Psychological Society's Psychology of Women Section's annual conference being held in Windsor.
Catherine Naughton said: "Research has previously shown that strong social bonds can act as a beneficial psychological ...
A diet and exercise regime for high-risk obese pregnant women, whilst effective in promoting a healthy lifestyle, does not prevent gestational diabetes, finds a study led by King's College London. The findings, published in the Lancet Diabetes and Endocrinology, suggest that programmes promoting healthy behaviours are unlikely to be effective in preventing diabetes in obese women; instead, resources should be directed towards better screening and treatment, including the use of a more stringent threshold for diagnosis.
Obesity rates are highest in developed countries, ...
Highlight
Certain electrocardiogram measures helped investigators identify a subgroup of individuals with chronic kidney disease who had substantially elevated risks of dying from heart disease.
An estimated 26 million people in the United States have chronic kidney disease, and heart disease is the leading cause of death in these patients.
Washington, DC (July 9, 2015) -- Several common measures obtained from electrocardiograms (ECGs) may help clinicians determine a kidney disease patient's risk of dying from heart disease. The findings, which are published in a study ...