(Press-News.org) Results of a 2013 DREAM Challenge - a crowdsourcing initiative for systems biomedicine - have been published in Nature Biotechnology;
Hundreds of scientists from around the world pooled their efforts to test how accurately they could predict the effect of toxic compounds in different individuals, or across a population;
Combined results achieved a rough estimate of population effects, and methods emerged that may be able to provide real-world benefit in the hazard assessments of new compounds.
10 August 2015 - An international study published in Nature Biotechnology presents the combined results of a 2013 DREAM Challenge: a crowd-sourcing initiative to test how well the effects of a toxic compound can be predicted in different people. The study, which is relevant to public and occupational health, shows that computational methods can be used to predict some toxic effects on populations, although they are not yet sensitive enough to predict such effects in individuals. It also presents algorithms useful for environmental risk assessment.
If we could use computers to predict whether a compound would have a toxic effect on people, chemical safety testing would be a lot simpler. In a community-based challenge led and organised by scientists from EMBL-EBI, Sage Bionetworks, IBM, the University of North Carolina, and the NIH's National Institute of Environmental Health Sciences (NIEHS) and National Center for Advancing Translational Sciences (NCATS), hundreds of computational biologists from all over the world tried their hand at predicting the toxicities of environmental compounds that had potential adverse health effects.
The organisers used 884 lymphoblastoid cell lines that had SNP and gene-expression data available through the 1000 Genomes Project. They measured cellular toxicity of 156 compounds on these cell lines, which represented individuals from nine subpopulations throughout Europe, Africa, Asia and the Americas. Participants were challenged to develop algorithms that could predict toxic response in different individuals and across populations, all based on the structural attributes of the compounds.
"Our partners in the US took 1000 Genomes Project cell lines and treated them with different compounds, so we knew which compound had a toxic effect for each cell line," explains Julio Saez-Rodriguez, former Research Group Leader at EMBL-EBI now at RTWH Aachen University. "So we wanted to know, can you predict that? For a given compound, how will it affect people? For a given person, what compounds will they be sensitive to? This is really important for things like manufacturing, where people might be exposed to a new compound that hasn't been tested yet."
Dozens of teams submitted 179 predictions based on state-of-the-art computational models, and the organisers compared them against the experimental results. In the great tradition of crowd sourcing in bioinformatics, the organisers integrated the results, taking the best of each and forming a new tool to predict toxicity.
Predictions were slightly better than random for individuals, but the combined results could roughly predict population-level response to different compounds. However, improved accuracy is needed before it is possible to predict health risks associated with unknown compounds accurately.
One key benefit of the study is that it offers new methodologies for improvements in some areas of hazard evaluation and assessment.
"This partnership and challenge offer a way to provide both powerful scientific insights and meaningful public health impact by accelerating the pace of toxicity testing," says Allen Dearry, Director of the NIEHS Office of Scientific Information Management. "The winning computational models provide significant advances in our ability to predict toxicity risk for environmental chemicals and set the stage for future data-driven challenges and competitions in environmental health science."
"The ability of the top teams to predict population-level toxicity for unknown compounds - based on similarities in chemical structure to known compounds - far surpassed our anticipations," says Lara Mangravite, Director of Systems Biology at Sage Bionetworks. "This was a true case where crowd-sourcing the problem provided answers that would otherwise never have been found."
"We had hundreds of people from all over the world participating, from prestigious labs to people who don't even work in biology," says Federica Eduati, who carried out the analyses and is an EMBL interdisciplinary postdoctoral fellow (EIPOD) at EMBL-EBI. "You don't need to be at a top-tier institute to play with great data - if you've got a good idea, you can share it."
INFORMATION:
Source article
Eduati, F., et al. (2015). Predicting response of toxic compounds in human populations: a crowdsourcing study. Nature Biotechnology (in press). Published online 10 August 2015; DOI: 10.1038/nbt.3299
About DREAM
DREAM is a community-based effort, founded by Gustavo Stolovitzky, to tackle problems in systems biomedicine. On 11 June 2013 the NIEHS-NCATS-UNC DREAM Toxicogenetics Challenge was launched. It was led and organised by scientists from EBI, Sage Bionetworks, IBM, the University of North Carolina, the National Institute of Environmental Health Sciences (NIEHS) and the National Center for Advancing Translational Sciences (NCATS). The Challenge closed on 15 September 2013. Winning team members from each sub-challenge spoke at the 2013 DREAM Conference, on 8 November in Toronto, Canada, in conjunction with the RECOMB/ISCB Conference on Regulatory and Systems Genomics. Read more about the challenge at https://www.synapse.org/#!Synapse:syn1761567/wiki/54680 END
Widespread drought-sensitive butterfly population extinctions could occur in the UK as early as 2050 according to a new study published today in the scientific journal Nature Climate Change.
However, the authors conclude that substantial greenhouse gas emission reductions combined with better management of landscapes, in particular reducing habitat fragmentation, will greatly improve the chances of drought-sensitive butterflies flying until at least 2100.
The study was led by Dr Tom Oliver from the UK's Centre for Ecology & Hydrology (CEH) in collaboration with colleagues ...
An international research collaboration led by Massachusetts General Hospital (MGH) investigators has identified the first gene in which mutations cause the common form of mitral valve prolapse (MVP), a heart valve disorder that affects almost 2.5 percent of the population. In a paper receiving advance online publication in Nature, the research team reports finding mutations in a gene called DCHS1 in affected members of three families in which MVP is inherited.
"This work provides insights into the pathways regulating valve growth and development and implicates a previously ...
A new computational method developed by scientists from the University of Chicago improves the detection of genes that are likely to be causal for complex diseases and biological traits. The method, PrediXcan, estimates gene expression levels across the whole genome - a better measure of biological action than single mutations - and integrates it with genome-wide association study (GWAS) data. PrediXcan has the potential to identify gene targets for therapeutic applications faster and with greater accuracy than traditional methods. It is described online in Nature Genetics ...
JAMA Internal Medicine will publish a package of articles, along with an author interview podcast, focused on end-of-life, euthanasia and physician-assisted suicide. The original investigation, research letter, special communication and commentaries are detailed below.
In the first article, Marianne C. Snijdewind, M.A., of the VU University Medical Center, Amsterdam, and coauthors1 looked at outcomes of requests for euthanasia or physician-assisted suicide received by a clinic founded in 2012 to provide the option of euthanasia or physician-assisted suicide for patients ...
For the past decade, cutting-edge health care providers and researchers have increasingly pushed to integrate care for mental health and substance use problems within primary medical care for children and adolescents. Their hope is that children and teens who suffer from mental and behavioral disorders would fare better if their pediatricians or family doctors took an active role in linking them with mental health care, particularly when these doctors team up with mental health clinicians to help meet the needs of their young patients.
Now, a team of UCLA researchers ...
In research published in Nature Materials, a team led by scientists from the RIKEN Center for Emergent Matter Science in Japan has developed a new hydrogel that works like an artificial muscle--quickly stretching and contracting in response to changing temperature. They have also managed to use the polymer to build an L-shaped object that slowly walks forward as the temperature is repeatedly raised and lowered.
Hydrogels are polymers that can maintain large quantities of water within their networks. Because of this, they can swell and shrink in response to changes in ...
(Boston)-- Former National Football League (NFL) players who started playing tackle football before the age of 12 were found to have a higher risk of altered brain development compared to those who started playing at a later age. The study is the first to demonstrate a link between early exposure to repetitive head impacts and later life structural brain changes.
Led by researchers at Boston University School of Medicine (BUSM) and Brigham and Women's Hospital (BWH), the study appears online in the Journal of Neurotrauma.
The researchers examined 40 former NFL players ...
The invisible chemicals around and within us can tell many complicated stories. By sensing them, security agents can uncover explosive threats. By monitoring them in our breath, doctors can diagnose serious illnesses. And by detecting them on distant planets, astronomers may find signs of life.
These chemicals sometimes reveal their secrets when probed with mid-infrared wavelength lasers. Nearly all chemicals, including explosives, industrial, and pollutants, strongly absorb light in the mid-infrared wavelength region, which is often called the "fingerprint region" for ...
CAMBRIDGE, Mass.--It's an old joke that many fusion scientists have grown tired of hearing: Practical nuclear fusion power plants are just 30 years away -- and always will be.
But now, finally, the joke may no longer be true: Advances in magnet technology have enabled researchers at MIT to propose a new design for a practical compact tokamak fusion reactor -- and it's one that might be realized in as little as a decade, they say. The era of practical fusion power, which could offer a nearly inexhaustible energy resource, may be coming near.
Using these new commercially ...
EAST LANSING, Mich. (July 10,2015) - Just as nations around the globe carefully guard their defense secrets, so do plants.
New research in the current issue of Nature, however, has revealed the molecular secrets of plants' defense mechanisms at the atomic level. The study, led by Michigan State University and Van Andel Research Institute, focuses on the plant hormone jasmonate and its interaction with three key proteins. The findings could help scientists develop dream crops that are better equipped to fend off pests, diseases and future challenges created by fluctuating ...