(Press-News.org) CAMBRIDGE, MA -- Chemists working in a variety of industries and fields typically go through a laborious process to measure and mix reagents for each reaction they perform. And many of the common reagents they use sit for months or years on shelves in laboratories, where they can react with oxygen and water in the atmosphere, rendering them useless.
In a paper published this week in Nature, researchers at MIT describe a technique that could help avoid this costly waste, and greatly reduce the number of steps a chemist must perform to prepare common compounds for use in a wide range of chemical transformations.
Aaron C. Sather, the lead author of the paper, is a postdoc in the lab of Stephen Buchwald, the Camille Dreyfus Professor in Chemistry. He and his colleagues have harnessed the power of a small, simple technology that could transform the benchtop practice of organic chemistry: the capsule.
Some labs use what is known as a "glove box," an inert container that permits researchers to manipulate reagents in a controlled environment, isolated from the oxygen, carbon dioxide, and water in ambient air. But many laboratories in industry and academia don't have glove boxes because they're expensive to maintain, and take up precious space, Sather says. As a result, many chemists avoid performing certain useful, but complicated, reactions because they require a glove box.
Many reagents and catalysts aren't used simply because of this inconvenience. What's more, for a bench chemist working in materials science or pharmaceuticals, performing the complex sequence of steps to prepare certain compounds may be unfamiliar and onerous.
"If you can grab the reagents off the shelf and get the reaction to work without that expertise or a glove box, it's much more accessible," Sather says.
Paraffin delivery vehicles
Building on previous work by Douglass Taber at the University of Delaware, the researchers tried to disperse mixtures of reagents in molten paraffin wax, which has been demonstrated to protect oxygen- and water-sensitive compounds for long periods of time. But as the material cooled, certain dense reagents, such as cesium fluoride, would settle to the bottom. The scientists then decided to try making small capsules out of paraffin, enabling precise estimates of the contents for grab-and-go use.
"We thought, if we could enclose multiple reagents [and] catalysts in some way and actually know how much we put in," Sather says, "we could dramatically simplify chemical synthesis with these single-use capsules."
Paraffin's physical properties make it ideal as a delivery vehicle for all kinds of chemical compounds. "We wanted something that was inert, a long-chain hydrocarbon," Sather says, "that would have no competing side reactions with both catalyst and reagents. It's largely unreactive. Paraffin is insanely cheap, and nice and easy to work with. Paraffin doesn't pick up any water -- it's just like grease."
Upon heating, the paraffin capsule melts/dissolves in the reaction solvent, releasing its contents. After the reaction is finished, the paraffin can then be removed through precipitation, filtration, and chromatography.
Sather and co-authors Hong Geun Lee and James Colombe made the capsules by hand, using a glass stir rod to make the hollow shells. Then they filled them with dry reagents, and used a hot metal spatula to melt the wax and seal it off. The resulting capsules look like slightly bigger versions of the gelcaps sold over the counter at any drug store.
The team applied the paraffin capsule technology to a variety of reactions, focusing on combinations that are of broad applicability and interest across different fields, from making sensors to making pharmaceuticals. As an example, the researchers combined an oxygen-sensitive catalyst with cesium fluoride in capsules. They performed the same reactions using these capsules, and then in a glove box, and achieved similar results for both approaches.
A radically simplified process
Ironically, in order to prepare this "glove box-free" system, the group had to use a glove box to actually make the capsules. But the whole production process could easily be mechanized, Sather says, creating a low-cost, widely accessible alternative to glove boxes. Companies could sell hollow capsules for chemists to load themselves, or sell them pre-measured and pre-loaded.
Once they were made, the capsules dramatically simplified the benchtop chemistry. "Instead of weighing out multiple reagents and catalysts, you're adding a capsule and weighing out one or two compounds," Sather points out. "It's really quick, especially for people who want to make a lot of molecules."
The capsules also proved to be durable. The researchers took capsules filled with cesium fluoride -- which is very water-sensitive -- and immersed them in water overnight. The next day they took them out, dried them off with a paper towel and used them in a reaction.
"The result was the same," Sather says. "It told us that they're completely sealed. In terms of protecting water-sensitive compounds inside these capsules, the potential is huge."
Sather says wider use of this technique could greatly extend the shelf life of common commodity chemicals. To demonstrate this, he and his colleagues prepared capsules containing multiple base-activated catalysts, along with strong bases, all mixed together in the solid state.
"They were still good after eight months on the benchtop, mixed together inside the capsule," Sather says. "There was no decomposition. And they weren't stored in any special way -- just put in a plastic bin."
The researchers had similar success in an experiment conducted with a reagent that would degrade in hours if exposed to air; after more than a year of storage on the shelf in capsule form, there was no degradation.
Sather is most excited by the potential for this technology to make the work of chemists more efficient, and to widen access to demanding but useful reactions by overcoming the inconvenience and tedium associated with glove boxes.
"With all of the reactions we develop in this lab," Sather says, "we keep the practitioner in mind. If it's really hard to do, no one's going to use it. We really want people to use the chemistry we work so hard to develop."
INFORMATION:
Male elephant seals compete fiercely for access to females during the breeding season, and their violent, bloody fights take a toll on both winners and losers. These battles are relatively rare, however, and a new study shows that the males avoid costly fights by learning the distinctive vocal calls of their rivals. When they recognize the call of another male, they know whether to attack or flee depending on the challenger's status in the dominance hierarchy.
Researchers from UC Santa Cruz have been studying the behavior of northern elephant seals at Año Nuevo ...
BOSTON - Researchers from Beth Israel Deaconess Medical Center (BIDMC) are homing in on the potential benefits of allowing patients access to the notes their clinicians write after a visit. An article published in the August edition of The Joint Commission Journal on Quality and Patient Safety suggests that this kind of patient engagement has the power to improve safety and quality of care.
The practice of sharing visit notes more readily began with the OpenNotes study in 2010. More than 100 primary care doctors at three hospitals invited 20,000 of their patients to ...
In debt and don't know what to do? Conventional economic wisdom says to pay off high-interest loans first. Yet according to a new study in the Journal of Marketing Research, paying off your smallest debts first can provide the motivation you need to successfully pay off even the most burdensome debts.
"Winning what are known as 'small victories' by paying off small debts first can give consumers a real boost in eventually paying off all their debts," write the authors of the study, Alexander L. Brown (Texas A&M University) and Joanna N. Lahey (Texas A&M University). "The ...
Legos, the popular toy bricks, may be great for stimulating creativity in little kids. But when it comes to adults, things might be a little different. According to a new study in the Journal of Marketing Research, when adults are given a set of Legos to solve a well-defined problem, their creativity may suffer when tackling subsequent tasks.
"There are a lot of studies that explore what enhances creativity. Ours is one of the few that considers ways in which creativity may be undermined," write the authors of the study, C. Page Moreau (University of Wisconsin) and Marit ...
Attention all you would-be forecasters out there. Do you want people to think you know the future? Then predict with a high degree of certainty that something will happen. According to a new study in the Journal of Marketing Research, people trust a forecaster more when she predicts that something is more likely to occur.
"When a forecaster predicts that something has a high likelihood of happening, consumers infer that the forecaster is more confident in her prediction, that she is basing the prediction on more in-depth analysis, and that she is more trustworthy," write ...
New companies are often successful because they are innovative. In search of new capital, these companies often go public. But does going public affect a company's ability to remain creative and at the cutting edge--the very qualities that allowed it be successful in the first place? A new study in the Journal of Marketing Research says yes. According to the study, when companies go public, they actually innovate more--but their innovations are far more conservative and less groundbreaking than before.
"Going public is a mixed bag for firms when it comes to innovation. ...
Exporting is a popular way to enter an international market. But just how are export decisions made? In a rapidly changing economic environment, can exporting companies rely on improvisation? Or should they commit to carefully thought out and executed plans? According to a new study in the Journal of Marketing Research, companies need to do both, to plan as well as improvise, as there is no one "best way" for export managers to make decisions.
"That both planning and improvisation are needed may come as a surprise. Historically, observers have viewed planning and improvisation ...
Rapid Eye Movement (REM) sleep, the period in which we experience vivid dreams, was discovered by scientists in the 1950s. Because REM sleep is associated with dreaming, on the one hand, and eye movement, on the other, it has been tempting to assume that each movement of the eye is associated with a specific dream image. But despite decades of intense research by leading international scientists, this intuitive hypothesis has remained unproven.
A new study based on rare neuronal data offers the first scientific evidence of the link between rapid eye movement, dream images, ...
Suppose China wants to buy microprocessors from the United States. The two countries sign a contract--and then the United States hopes that China, as the buyer, holds up its end of the bargain. (One could say the same for China, by the way.) One might think that a contract spelling out in detail the terms of sale and delivery would eliminate the chance that the buyer would violate those terms. A new study in the Journal of International Marketing, however, suggests that well-specified contracts are effective in reducing violations on the part of the buyer only if the buyer ...
Male and female brains operate differently at a molecular level, a Northwestern University research team reports in a new study of a brain region involved in learning and memory, responses to stress and epilepsy.
Many brain disorders vary between the sexes, but how biology and culture contribute to these differences has been unclear. Now Northwestern neuroscientists have found an intrinsic biological difference between males and females in the molecular regulation of synapses in the hippocampus. This provides a scientific reason to believe that female and male brains ...