PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

HKU chemists develop a new drug discovery strategy for "undruggable" drug targets

HKU chemists develop a new drug discovery strategy for
2021-01-02
(Press-News.org) A research team led by Dr Xiaoyu LI from the Research Division for Chemistry, Faculty of Science, in collaboration with Professor Yizhou LI from School of Pharmaceutical Sciences, Chongqing University and Professor Yan CAO from School of Pharmacy, Second Military Medical University in Shanghai has developed a new drug discovery method targeting membrane proteins on live cells.

Membrane proteins play important roles in biology, and many of them are high-value targets that are being intensively pursued in the pharmaceutical industry. The method developed by Dr Li's team provides an efficient way to discover novel ligands and inhibitors against membrane proteins, which remain largely intractable to traditional approaches. The development of the methodology and its applications are now published in Nature Chemistry, a prestigious chemistry journal by the Nature Publishing Group (NPG).

Background Membrane proteins on the cell surface perform a myriad of biological functions that are vital to the survival of cells and organisms. Not surprisingly, numerous human diseases are associated with aberrant membrane protein functions. Indeed, membrane proteins account for over 60% of the targets of all FDA-approved small-molecule drugs. The G-protein coupled receptor (GPCR) superfamily alone, as the largest class of cell-surface receptors, are the targets of ~34% of all clinical drugs. However, despite the significance, drug discovery against membrane proteins is notoriously challenging, mainly due to the special property of their natural habitat: the cell membrane. Moreover, membrane proteins are also difficult to study in an isolated form, as they tend to lose essential cellular feature and may be deactivated. In fact, membrane proteins have long been considered as a type of "undruggable" targets in the pharmaceutical industry.

In recent years, DNA-encoded chemical library (DEL) has emerged and become a powerful drug screening technology. To simplify, we can use a book library as an example. In a library, each book is indexed with a catalogue number and spatially encoded with a specific location on a bookshelf. Analogously, in a DEL, each chemical compound is attached with a unique DNA tag, which serves as the "catalogue number" recording the structural information of the compound. With DNA encoding, all library compounds can be mixed and screened against the target simultaneously to discover the ones that can modulate the biological functions of the target, e.g. inhibiting the proteins that are aberrantly active in malignant cancers. DELs can contain astonishingly large numbers of test compounds (billions or even trillions), and DEL screening can be conducted in just a few hours in a regular chemistry lab. Today, DEL has been widely adopted by nearly all major pharmaceutical industry worldwide. However, DEL also had encountered significant difficulties in interrogate membrane proteins on live cells.

2 Key findings: Tracking and Boosting There are two hurdles that the team has overcome to enable the application of DEL on live cells. First, cell surface is not a smooth convex shape like a balloon; it is extremely complex with hundreds of different biomolecules with a rugged topology; thus, locating the desired target on the cells surface is like finding a single tree in a thick tropical forest. The team has overcome this "target specificity" problem by using a method they previously developed: DNA-programmed affinity labelling (DPAL). This method utilises a DNA-based probe system that can specifically deliver a DNA tag to the desired protein on live cells, and the DNA tag serves as a beacon to direct target-specific DEL screening. In other words, the team first installed a "tracker" on the target to achieve screening specificity.

The second challenge is target abundance. Typically, membrane proteins exist in nanomolar to low micromolar concentration, which is far below the high micromolar concentration needed to capture the tiny fraction of binders among billions of non-binders in a library. To solve this problem, the team employed a novel strategy by using complementary sequences in the DNA tag on the target protein and the actual library, so that the library can hybridise close to the target, thereby "boosting" the effective concentration of the target protein. In other words, the "tracker" can not only help the library locate the target, but also create an attractive force to concentrate the library around the target, not being distracted by the non-binding population.

In the publication, the team reports their detailed methodology development, and they also demonstrate the generality and performance of this method by screening a 30.42-million-compound library against folate receptor (FR), carbonic anhydrase 12 (CA-12), and epidermal growth factor receptor (EGFR) on live cells, all are important targets in anti-cancer drug discovery. This approach is expected to broadly applicable to many membrane proteins. For example, classical drug targets, such as GPCRs and ion channels, may be revisited in a live cell setting to identify new drug discovery opportunities by harnessing the power of DEL.

"We expect to the utility of this method is not limited to drug discovery, but also in academic research to explore challenging biological systems, such as oligomeric membrane protein complexes and cell-cell communications," said Dr Xiaoyu Li.

Co-corresponding author Professor Yizhou Li from Chongqing University said: "This method has the potential to facilitate drug discovery for membrane proteins with the power of large and complex chemical diversity from DNA-encoded chemical libraries." Co-corresponding author Professor Yan Cao from Second Military Medical University in Shanghai added: "This technology is an effective tool for characterising ligand-target interaction; it will cast new light on the development of high throughput screening methods, and thus facilitate the fishing of ligands targeting membrane proteins."

INFORMATION:

About the research team The research was conducted by a team led by Dr Xiaoyu Li from Research Division for Chemistry. Postdoctoral fellow Dr Yiran Huang from Dr Li's group is the first author. Professor Yizhou Li from School of Pharmaceutical Sciences, Chongqing University and Professor Yan Cao from School of Pharmacy, Second Military Medical University in Shanghai are co-corresponding authors. Other HKU scientists in the Research Division for Chemistry contributing to the research include Miss Ling MENG, PhD student; Dr Yu ZHOU, postdoctoral fellow; Dr Yi Man Eva FUNG, Research Officer; Dr Xiaomeng LI, postdoctoral fellow; and Mr Cen HUANG, PhD student.

This work was supported by Research Grants Council of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission of Hong Kong, National Natural Science Foundation of China, and State Key Laboratory of Synthetic Chemistry at The University of Hong Kong. We thank the Centre for PanorOmic Sciences (CPOS) Genomics Core at HKU for analysis support.

About Dr Xiaoyu Li Dr Xiaoyu Li is an Associate Professor of Research Division for Chemistry at The University of Hong Kong. His research interests lie in the fields of Chemical Biology, focusing on the development of new methods and enabling tools for both basic research and drug discovery. His research activities have been focusing on three areas: DNA-encoded chemical library (DEL) and its applications, protein labelling and profiling, and target identification and mechanism study of bioactive compounds.

More information about Dr Xiaoyu Li and his research group:
https://lixygroup.wixsite.com/lixy

About the research paper:
https://www.nature.com/articles/s41557-020-00605-x

A "behind the paper" blog about this work can be accessed at the Nature Research Chemistry Community:
https://chemistrycommunity.nature.com/posts/screening-dna-encoded-chemical-library-del-on-the-surface-of-live-cells

Images download and captions:
https://www.scifac.hku.hk/press


[Attachments] See images for this press release:
HKU chemists develop a new drug discovery strategy for

ELSE PRESS RELEASES FROM THIS DATE:

New research makes strong case for restoring Hong Kong's lost oyster reefs

New research makes strong case for restoring Hong Kongs lost oyster reefs
2021-01-02
New research produced jointly by The Swire Institute of Marine Science (SWIMS), Faculty of Science, The University of Hong Kong (HKU), and The Nature Conservancy (TNC), published recently in the scientific journal Restoration Ecology, shows the enormous potential of restoring lost oyster reefs, bringing significant environmental benefits. Benefits of oyster reefs Hong Kong was once home to thriving shellfish reefs, but due to a combination of factors including over-exploitation, coastal reclamation and pollution, shellfish populations have declined drastically. Restoring oyster reefs along urbanized ...

Study identifies distinct sub-types of aggressive tumours to allow for targeted treatment

2021-01-02
Angiosarcomas are clinically aggressive tumours that are more prevalent in Asian populations Study led by Singapore clinician-scientists has found a way to classify angiosarcomas into three subtypes, allowing for more targeted treatment, better outcomes for patients and the development of new therapies Findings were published in The Journal of Clinical Investigation in October this year Singapore, 29 December 2020 - A new study led by clinician-scientists from the National Cancer Centre Singapore (NCCS), with collaborators from research institutions worldwide, has found that angiosarcomas have unique genomic and immune profiles which allow them ...

Faster, greener way of producing carbon spheres

Faster, greener way of producing carbon spheres
2021-01-02
A fast, green and one-step method for producing porous carbon spheres, which are a vital component for carbon capture technology and for new ways of storing renewable energy, has been developed by Swansea University researchers. The method produces spheres that have good capacity for carbon capture, and it works effectively at a large scale. Carbon spheres range in size from nanometers to micrometers. Over the past decade they have begun to play an important role in areas such as energy storage and conversion, catalysis, gas adsorption and storage, drug and enzyme delivery, and water treatment. They are also at the heart of carbon capture technology, ...

Music-induced emotions can be predicted from brain scans

2021-01-02
Researchers at the University of Turku have discovered what type of neural mechanisms are the basis for emotional responses to music. Altogether 102 research subjects listened to music that evokes emotions while their brain function was scanned with functional magnetic resonance imaging (fMRI). The study was carried out in the national PET Centre. The researchers used a machine learning algorithm to map which brain regions are activated when the different music-induced emotions are separated from each other. - Based on the activation of the auditory and motor cortex, we were able to accurately predict whether the research subject was listening ...

Heart transplantations: prospects of success increase with larger case volumes

2021-01-02
In a series of commissions awarded by the Federal Joint Committee (G-BA) to the Institute for Quality and Efficiency in Health Care (IQWiG), the question is whether for certain surgical procedures, a correlation can be shown between the volume of services provided per hospital and the quality of treatment results. IQWiG's rapid report on heart transplantations is now available. According to the findings, a positive correlation can be inferred between the volume of services and the quality of treatment results for heart transplantations in adults: In hospitals with larger case volumes, fewer of the transplanted patients die, both in timely association with the intervention ...

Industry collaboration leads to important milestone in the creation of a quantum computer

Industry collaboration leads to important milestone in the creation of a quantum computer
2021-01-02
Quantum computer: One of the obstacles for progress in the quest for a working quantum computer has been that the working devices that go into a quantum computer and perform the actual calculations, the qubits, have hitherto been made by universities and in small numbers. But in recent years, a pan-European collaboration, in partnership with French microelectronics leader CEA-Leti, has been exploring everyday transistors--that are present in billions in all our mobile phones--for their use as qubits. The French company Leti makes giant ...

Quick look under the skin

Quick look under the skin
2021-01-02
Imaging techniques enable a detailed look inside an organism. But interpreting the data is time-consuming and requires a great deal of experience. Artificial neural networks open up new possibilities: They require just seconds to interpret whole-body scans of mice and to segment and depict the organs in colors, instead of in various shades of gray. This facilitates the analysis considerably. How big is the liver? Does it change if medication is taken? Is the kidney inflamed? Is there a tumor in the brain and did metastases already develop? ...

The evolving role of platelet-rich plasma (PRP) in plastic surgery

2021-01-02
December 28, 2020 - Platelet-rich plasma (PRP) treatment, which involves injecting a small amount of a patient's own blood to release various growth factors from platelets, continues to increase in popularity. The American Society of Plastic Surgeons has tracked the procedure since 2015 and reports a 25 percent increase in cosmetic PRP use in the last four years. That increase in popularity could in part trace back to celebrities extolling the procedure's cosmetic benefits. Yet with so much information coming from so many different sources about the treatment's ...

The liverwort oil body is formed by redirection of the secretory pathway

2021-01-02
Cells, the basic unit of life, are surrounded by a limiting membrane called the plasma membrane. Inside cells, there are various membrane-bounded organelles, each of which has various and distinctive functions. How these organelles, which individually boast different functions, have been developed during evolution remains unknown. This phenomenon has fascinated many researchers. In the study published in Nature Communications, the evolutionary relationship between two different organelles in liverwort cells has been revealed: the cell plate, which divides ...

New studies suggest vaping could cloud your thoughts

2021-01-02
Two new studies from the University of Rochester Medical Center (URMC) have uncovered an association between vaping and mental fog. Both adults and kids who vape were more likely to report difficulty concentrating, remembering, or making decisions than their non-vaping, non-smoking peers. It also appeared that kids were more likely to experience mental fog if they started vaping before the age of 14. While other studies have found an association between vaping and mental impairment in animals, the URMC team is the first ...

LAST 30 PRESS RELEASES:

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

Menarini Group and Insilico Medicine enter a second exclusive global license agreement for an AI discovered preclinical asset targeting high unmet needs in oncology

Climate fee on food could effectively cut greenhouse gas emissions in agriculture while ensuring a social balance

Harnessing microwave flow reaction to convert biomass into useful sugars

[Press-News.org] HKU chemists develop a new drug discovery strategy for "undruggable" drug targets