PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Discovery pinpoints new therapeutic target for atopic dermatitis

Discovery pinpoints new therapeutic target for atopic dermatitis
2021-01-11
(Press-News.org) Researchers from Trinity College Dublin have discovered a key mechanism underlying bacterial skin colonisation in atopic dermatitis, which affects millions around the globe.

Atopic dermatitis (AD, also called commonly eczema) is the most common chronic inflammatory skin disorder in children, affecting 15-20% of people in childhood. During disease flares, patients experience painful inflamed skin lesions accompanied by intense itch and recurrent skin infection.

The bacterium Staphylococcus aureus (S. aureus) thrives on skin affected by AD, increasing inflammation and worsening AD symptoms. Although a small number of therapies are available at present for patients with moderate to severe AD, it is vital that we understand how S. aureus colonises AD skin so that we can develop new treatments that directly target the bacterium.

The researchers, from Trinity's School of Genetics and Microbiology and School of Clinical Medicine, set out to identify the human and bacterial factors that enable S. aureus to interact with skin by studying the attachment of the bacterium to "corneocytes", which are dead, flattened skin cells in the outer layer of the skin.

The findings, recently published in the prestigious journal Proceedings of the National Academy of Sciences of the USA, show that S. aureus binds to a specific region of human corneodesmosin, a protein located on the surface of AD patient corneocytes.

Bacterial binding to corneocytes in the lab is reduced if the relevant region of corneodesmosin is blocked with an antibody, indicating the importance of this interaction during S. aureus attachment to human skin.

In lab experiments, Dr Aisling Towell, PhD graduate in Microbiology at Trinity, showed that bacterial interaction with corneodesmosin relies on two proteins attached to the surface of S. aureus, FnBPB and ClfB.

Explaining the significance, Dr Joan Geoghegan, Associate Professor of Microbiology in Trinity's Department of Microbiology, said:

"Our findings provide new insights into how S. aureus bacteria attach to corneocytes at the skin surface, which is a crucial step during colonisation. Specifically, our discovery of an interaction between bacterial proteins and corneodesmosin on AD patient corneocytes is a key advance that could pave the way towards developing targeted approaches for preventing S. aureus skin colonisation in AD."

Alan Irvine, Professor of Dermatology at Trinity, added:

"AD is both a common and incredibly uncomfortable condition that has a massive impact on quality of life in both children and adults. Colonisation of the skin with S. aureus is a major driver of AD and a cause of disease flares. By identifying a major mechanism through which S aureus binds to the skin of patients with AD we have opened the possibility of targeting this pathway as a therapeutic option in AD.

"Targeting S. aureus binding to human skin by using small molecules would be a welcome addition to our therapeutic options. This is especially important in an era where antimicrobial resistance is an emerging global threat."

INFORMATION:

A multidisciplinary team of scientists from Trinity, Université Catholique de Louvain and University of Amsterdam collaborated on this study. The research at Trinity was supported by the British Skin Foundation, Irish Research Council and the National Children's Research Centre, Dublin.


[Attachments] See images for this press release:
Discovery pinpoints new therapeutic target for atopic dermatitis

ELSE PRESS RELEASES FROM THIS DATE:

Research shapes safe dentistry during Covid-19

Research shapes safe dentistry during Covid-19
2021-01-11
Leading research at Newcastle University has been used to shape how dentistry can be carried out safely during the Covid-19 pandemic by mitigating the risks of dental aerosols. It is well known that coronavirus can spread in airborne particles, moving around rooms to infect people, and this has been a major consideration when looking into patient and clinician safety. Research, published in the Journal of Dentistry, has led the way in helping shape national clinical guidance for the profession to work effectively under extremely challenging circumstances. The findings have been used by the Dental Schools' Council, Association of Dental Hospitals and the Scottish Dental Clinical Effectiveness ...

Tasmanian tiger pups found to be extraordinarily similar to wolf pups

Tasmanian tiger pups found to be extraordinarily similar to wolf pups
2021-01-11
Micro-CT scanning and digital reconstructions have been used to compare the skulls of the Tasmanian tiger (thylacine) and wolf across their early development and into adulthood, establishing that not only did the thylacine resemble the wolf as adults, but also as newborns and juveniles. "Remarkably, the Tasmanian tiger pups were more similar to wolf pups than to other closely related marsupials," Professor Andrew Pask from the University of Melbourne said. The collaborative study with Flinders University and Museums Victoria complement earlier findings that thylacine and wolf have evolved ...

Accelerating AI computing to the speed of light

2021-01-11
Artificial intelligence and machine learning are already an integral part of our everyday lives online. For example, search engines such as Google use intelligent ranking algorithms and video streaming services such as Netflix use machine learning to personalize movie recommendations. As the demands for AI online continue to grow, so does the need to speed up AI performance and find ways to reduce its energy consumption. Now a University of Washington-led team has come up with a system that could help: an optical computing core prototype that uses phase-change material. This system is fast, energy efficient and capable of accelerating ...

A charge-density-wave topological semimetal

A charge-density-wave topological semimetal
2021-01-11
Topological materials are characterised by unique electronic and physical properties that are determined by the underlying topology of their electronic systems. Scientists from the Max Planck Institutes for Microstructure Physics (Halle) and for Chemical Physics of Solids (Dresden) have now discovered that (TaSe4)2I is the first material in which a charge density wave induces a phase transition between the semimetal to insulator state. An international team of scientists at the Max Planck Institute for Microstructure Physics, Halle (Saale), the Max Planck Institute for Chemical Physics of Solids ...

Confined growth of ZIF-8 in organosilica nanoparticles to regulate mRNA translation

Confined growth of ZIF-8 in organosilica nanoparticles to regulate mRNA translation
2021-01-11
Delivery of genetic molecules such as mRNA into cells is vital with important applications such as vaccine development. Various agents have been developed for mRNA delivery. However, conventional mRNA nanocarriers mainly focus on their physical interaction with mRNA molecules, or protection / delivery of mRNA, such as adjusting physical properties of nanocarriers to control binding with mRNA or cellular uptake. Moreover, effective mRNA delivery in hard-to-transfect APCs remains a challenge. The hard-to-transfect nature in APCs is partly attributed to the suppressed mRNA translation associated with the intrinsic high intracellular glutathione (GSH) level. Thus, ...

Expanding the boundaries of CO2 fixation

Expanding the boundaries of CO2 fixation
2021-01-11
Photorespiration is a highly energy consuming process in plants that leads to the release of previously fixed CO2. Thus, engineering this metabolic process is a key approach for improvement of crop yield and for meeting the challenge of ever-rising CO2 levels in the atmosphere. Researchers led by Tobias Erb from the Max Planck Institute for Terrestrial Microbiology in Marburg, Germany, have now succeeded in engineering the TaCo pathway, a synthetic photorespiratory bypass. This new-to-nature metabolic connection opens up new possibilities of CO2 fixation ...

Construction of carbon-based cell-like-spheres for robust potassium anode

Construction of carbon-based cell-like-spheres for robust potassium anode
2021-01-11
With the rapid development of smart portable electronics and electric vehicles, the consumption of lithium resource will increase dramatically and the cost of lithium-ion batteries (LIBs) may increase significantly in the future. In addition, the shortage (0.0017 wt% in the earth's crust) and uneven crustal distribution of lithium also limit its further development and application. As potassium (2.7 wt% in the earth's crust) have properties similar to lithium and abundant reserves. Therefore, as an alternative to LIBs, potassium ion batteries (PIBs) have become the focus of research. Potassium (2.92 V vs. ...

Scientists identify workflow algorithm to predict psychosis

Scientists identify workflow algorithm to predict psychosis
2021-01-11
Scientists from the Max Planck Institute of Psychiatry, led by Nikolaos Koutsouleris, combined psychiatric assessments with machine-learning models that analyse clinical and biological data. Although psychiatrists make very accurate predictions about positive disease outcomes, they might underestimate the frequency of adverse cases that lead to relapses. The algorithmic pattern recognition helps physicians to better predict the course of disease. The results of the study show that it is the combination of artificial and human intelligence that optimizes the prediction ...

Ferrofluid surface simulations go more than skin deep

2021-01-11
The spiky structure that erupts from the smooth surface of a ferrofluid when a magnet is brought close can be predicted more accurately than previously thought. KAUST researchers have shown that computational algorithms can calculate the ferrofluid's bristling response to a magnet by simulating only the liquid's surface layer. Ferrofluids are liquid suspensions of iron-based particles that behave like a regular fluid, but once a magnet is present, the ferrofluid rapidly shape-shifts to form spikes that align with the magnetic field. Originally developed by NASA, ferrofluids have numerous uses ranging from advanced electronics to nanomedicine and have the potential for even broader use, if their magnetic responses could be predicted more accurately. Dominik Michels and ...

Metabolic potential and molecular diversity of natural products from microorganisms

Metabolic potential and molecular diversity of natural products from microorganisms
2021-01-11
Co-culture: stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms Announcing a new publication for Marine Life Science & Technology journal. In this review article the authors Xiao-Yue Peng, Jin-Tao Wu, Chang?Lun Shao, Zhi-Yong Li, Min Chen and Chang-Yun Wang from the Ocean University of China, Qingdao, China, Yangzhou University, Yangzhou, China, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China and Shanghai Jiao Tong University, Shanghai, China consider the metabolic potential and molecular diversity of natural products from microorganisms. Microbial secondary metabolites have long ...

LAST 30 PRESS RELEASES:

Females have a 31% higher associated risk of developing long COVID, UT Health San Antonio-led RECOVER study shows

Final synthetic yeast chromosome unlocks new era in biotechnology

AI-powered prediction model enhances blood transfusion decision-making in ICU patients

MD Anderson Research Highlights for January 22, 2025

Scholastica announces integration with Crossmark by Crossref to expand its research integrity support

Could brain aging be mom’s fault? The X chromosome factor

Subterranean ‘islands’: strongholds in a potentially less turbulent world

Complete recombination map of the human-genome, a major step in genetics

Fighting experience plays key role in brain chemical’s control of male aggression

Trends in preventive aspirin use by atherosclerotic cardiovascular risk

Sex differences in long COVID

Medically recommended vs nonmedical cannabis use among US adults

Spanish scientists discover how the gut modulates the development of inflammatory conditions

Compact comb lights the way for next-gen photonics

New research reveals how location influences how our immune system fights disease

AI in cell research: Moscot reveals cell dynamics in unprecedented detail

New study finds social programs could reduce the spread of HIV by 29%

SIDS discovery could ID babies at risk of sudden death

Ozone exposure linked to hypoxia and arterial stiffness

Princeton Chemistry develops copper-detection tool to discover possible chelation target for lung cancer

Drug candidate eliminates breast cancer tumors in mice in a single dose

WSU study shows travelers are dreaming forward, not looking back

Black immigrants attract white residents to neighborhoods

Hot or cold? How the brain deciphers thermal sensations

Green tea-based adhesive films show promise as a novel treatment for oral mucositis

Single-cell elemental analysis using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

BioChatter: making large language models accessible for biomedical research

Grass surfaces drastically reduce drone noise making the way for soundless city skies

Extent of microfibre pollution from textiles to be explored at new research hub

Many Roads Lead to… the embryo

[Press-News.org] Discovery pinpoints new therapeutic target for atopic dermatitis