PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Pivotal discovery in quantum and classical information processing

Pivotal discovery in quantum and classical information processing
2021-01-13
(Press-News.org) Scientists tame photon-magnon interaction.

Working with theorists in the University of Chicago's Pritzker School of Molecular Engineering, researchers in the U.S. Department of Energy's (DOE) Argonne National Laboratory have achieved a scientific control that is a first of its kind. They demonstrated a novel approach that allows real-time control of the interactions between microwave photons and magnons, potentially leading to advances in electronic devices and quantum signal processing.

Microwave photons are elementary particles forming the electromagnetic waves that we use for wireless communications. On the other hand, magnons are the elementary particles forming what scientists call "spin waves" -- wave-like disturbances in an ordered array of microscopic aligned spins that can occur in certain magnetic materials.

"Before our discovery, controlling the photon-magnon interaction was like shooting an arrow into the air. One has no control at all over that arrow once in flight." -- Xufeng Zhang, assistant scientist in Argonne's Center for Nanoscale Materials

Microwave photon-magnon interaction has emerged in recent years as a promising platform for both classical and quantum information processing. Yet, this interaction had proved impossible to manipulate in real time, until now.

"Before our discovery, controlling the photon-magnon interaction was like shooting an arrow into the air," said Xufeng Zhang, an assistant scientist in the Center for Nanoscale Materials, a DOE User Facility at Argonne, and the corresponding author of this work. "One has no control at all over that arrow once in flight."

The team's discovery has changed that. "Now, it is more like flying a drone, where we can guide and control its flight electronically," said Zhang.

By smart engineering, the team employs an electrical signal to periodically alter the magnon vibrational frequency and thereby induce effective magnon-photon interaction. The result is a first-ever microwave-magnonic device with on-demand tunability.

The team's device can control the strength of the photon-magnon interaction at any point as information is being transferred between photons and magnons. It can even completely turn the interaction on and off. With this tuning capability, scientists can process and manipulate information in ways that far surpass present-day hybrid magnonic devices.

"Researchers have been searching for a way to control this interaction for the past few years," noted Zhang. The team's discovery opens a new direction for magnon-based signal processing and should lead to electronic devices with new capabilities. It may also enable important applications for quantum signal processing, where microwave-magnonic interactions are being explored as a promising candidate for transferring information between different quantum systems.

INFORMATION:

The DOE Office of Basic Energy Sciences supported this research, which was published in Physical Review Letters. Aside from Zhang, authors include Jing Xu, Changchun Zhong (University of Chicago), Xu Han, Dafei Jin and Liang Jiang (University of Chicago).

About Argonne's Center for Nanoscale Materials
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.osti.gov/User-Facilities/User-Faciliies-at-a-Glance.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.


[Attachments] See images for this press release:
Pivotal discovery in quantum and classical information processing

ELSE PRESS RELEASES FROM THIS DATE:

Nanotechnology prevents premature birth in mouse studies

2021-01-13
In a study in mice and human cells, Johns Hopkins Medicine researchers say that they have developed a tiny, yet effective method for preventing premature birth. The vaginally-delivered treatment contains nanosized (billionth of a meter) particles of drugs that easily penetrate the vaginal wall to reach the uterine muscles and prevent them from contracting. If proven effective in humans, the treatment could be one of the only clinical options available to prevent preterm labor. The FDA has recommended removing Makena (17-hydroxyprogesterone caproate), the only approved medicine for this purpose, from the market. The study was published Jan. 13 in Science Translational Medicine. There ...

Scientists discover new 'spectacular' bat from West Africa

Scientists discover new spectacular bat from West Africa
2021-01-13
A group of scientists led by the American Museum of Natural History and Bat Conservation International have discovered a new species of a striking orange and black bat in a mountain range in West Africa. The species, which the researchers expect is likely critically endangered, underscores the importance of sub-Saharan "sky islands" to bat diversity. The species is described today in the journal American Museum Novitates. "In an age of extinction, a discovery like this offers a glimmer of hope," said Winifred Frick, chief scientist at Bat Conservation International and ...

Resilience to climate change?

Resilience to climate change?
2021-01-13
With the impact of climate change increasing by the day, scientists are studying the ways in which human behavior contributes to the damage. A recent study at Walla Walla University, by a collaboration of researchers from Walla Walla University and La Sierra University, examined the effects of acidic water on octopuses, potentially bringing new insight into both how our activities impact the world around us, and the way that world is adapting in response. The study, "Impact of Short- and Long-Term Exposure to Elevated Seawater PCO2 on Metabolic Rate ...

Tiny molecules with a big impact

2021-01-13
The human organism requires a variety of small molecules, such as sugars or fats, in order to function properly. The composition of these so-called metabolites and their interaction - the metabolism - varies from person to person and is dependent not only on external influences, such as nutrition, but also to a significant extent on natural variations in our genetic make-up. In an international study, scientists from the Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin joined forces with colleagues from the United Kingdom, Australia and the United States and discovered hundreds ...

MIND and Mediterranean diets associated with later onset of Parkinson's disease

2021-01-13
A new study from UBC researchers suggests a strong correlation between following the MIND and Mediterranean diets and later onset of Parkinson's disease (PD). While researchers have long known of neuroprotective effects of the MIND diet for diseases like Alzheimer's and dementia, this study is the first to suggest a link between this diet and brain health for Parkinson's disease (PD). The MIND diet combines aspects of two very popular diets, the Mediterranean diet and the Dietary Approaches to Stop Hypertension (DASH) diet. "The study shows individuals with Parkinson's disease have a significantly later age of onset if their eating pattern closely aligns with the Mediterranean-type diet. The difference shown in the study was up to 17 years later in women and eight years later ...

Studying chaos with one of the world's fastest cameras

Studying chaos with one of the worlds fastest cameras
2021-01-13
There are things in life that can be predicted reasonably well. The tides rise and fall. The moon waxes and wanes. A billiard ball bounces around a table according to orderly geometry. And then there are things that defy easy prediction: The hurricane that changes direction without warning. The splashing of water in a fountain. The graceful disorder of branches growing from a tree. These phenomena and others like them can be described as chaotic systems, and are notable for exhibiting behavior that is predictable at first, but grows increasingly random with time. Because of the large role that chaotic systems play in the world around us, scientists and mathematicians have long sought to better understand them. Now, Caltech's Lihong Wang, the Bren Professor in the Andrew and ...

OR Medicaid expansion helped more women access insurance coverage for abortion services

2021-01-13
CORVALLIS, Ore. -- A recent study from Oregon State University found that after Oregon expanded Medicaid in 2014, more women were able to receive insurance coverage for abortion services, rather than paying out of pocket. In analyzing Medicaid claims data and other medical records, researchers found that the Medicaid-financed share of total abortions increased each of the first three years following the state's Medicaid expansion. The incidence of Medicaid-financed abortions increased 18% in 2014, then 7% each in 2015 and 2016. The total number of abortions in the state did not rise; rather, the expansion shifted who paid for them. "According to the literature, there was a 1% decline in the abortion rate in Oregon between 2014 and 2017. During the pre-expansion ...

Density of marijuana retailers linked to higher use among young adults

2021-01-13
As marijuana outlets open after the drug is legalized, the density of those recreational retailers is associated with more use and a greater intensity of use among young adults, according to a new RAND Corporation study. The study is among the first to examine associations between the density of marijuana outlets and marijuana use over time, and is the first to include unlicensed dispensaries in such an analysis. Studying young adults in Los Angeles County the year before and the year after marijuana was available for recreational purchase in ...

Mothers of children with Autism found to have significantly different metabolite levels

2021-01-13
TROY, N.Y. -- Blood sample analysis showed that, two to five years after they gave birth, mothers of children with autism spectrum disorder (ASD) had several significantly different metabolite levels compared to mothers of typically developing children. That's according to new research recently published in BMC Pediatrics by a multidisciplinary team from Rensselaer Polytechnic Institute, Arizona State University, and the Mayo Clinic. Researchers analyzed blood samples from 30 mothers whose young children had been diagnosed with ASD and 29 mothers of typically developing children. At the time that the samples were taken, the women's children were between 2 and 5 years old. The team found differences in several metabolite levels between the two groups of mothers. ...

Study find physical weathering of rock breakdown more important than previously recognized

Study find physical weathering of rock breakdown more important than previously recognized
2021-01-13
Research led by the University of Wyoming shows that physical weathering is far more important than previously recognized in the breakdown of rock in mountain landscapes. Because it is difficult to measure, physical weathering has commonly been assumed to be negligible in previous studies. Cliff Riebe, a professor in UW's Department of Geology and Geophysics, headed a research group that discovered that climate and erosion rates strongly regulate the relative importance of subsurface physical and chemical weathering of saprolite, the zone of weathered rock that retains the relative positions of mineral grains of the parent bedrock and lies between ...

LAST 30 PRESS RELEASES:

Dolphins use a 'fat taste' system to get their mother’s milk

Clarifying the mechanism of coupled plasma fluctuations using simulations

Here’s what’s causing the Great Salt Lake to shrink, according to PSU study

Can DNA-nanoparticle motors get up to speed with motor proteins?

Childhood poverty and/or parental mental illness may double teens’ risk of violence and police contact

Fizzy water might aid weight loss by boosting glucose uptake and metabolism

Muscular strength and good physical fitness linked to lower risk of death in people with cancer

Recommendations for studying the impact of AI on young people's mental health  proposed by Oxford researchers

Trump clusters: How an English lit graduate used AI to make sense of Twitter bios

Empty headed? Largest study of its kind proves ‘bird brain’ is a misnomer

Wild baboons not capable of visual self-awareness when viewing their own reflection

$14 million supports work to diversify human genome research

New study uncovers key mechanism behind learning and memory

Seeing the unseen: New method reveals ’hyperaccessible’ window in freshly replicated DNA

Extreme climate pushed thousands of lakes in West Greenland ‘across a tipping point,’ study finds

Illuminating an asymmetric gap in a topological antiferromagnet

Global public health collaboration benefits Americans, SHEA urges continued support of the World Health Organization

Astronomers thought they understood fast radio bursts. A recent one calls that into question.

AAAS announces addition of Journal of EMDR Practice and Research to Science Partner Journal program

Study of deadly dog cancer reveals new clues for improved treatment

Skin-penetrating nematodes have a love-hate relationship with carbon dioxide

Fewer than 1% of U.S. clinical drug trials enroll pregnant participants, study finds

A global majority trusts scientists, wants them to have greater role in policymaking, study finds

Transforming China’s food system: Healthy diets lead the way

Time to boost cancer vaccine work, declare UK researchers

Colorado State receives $326M from DOE/EPA to improve oil and gas operations and reduce methane emissions

Research assesses how infertility treatments can affect family and work relationships

New findings shed light on cell health: Key insights into the recycling process inside cells

Human papillomavirus infection kinetics revealed in new longitudinal study

Antibiotics modulate E. coli’s resistance to phages

[Press-News.org] Pivotal discovery in quantum and classical information processing