Scientists solve long-standing mystery by a whisker
UC Riverside mouse study shows where in the brain sensory input is transformed to movement
2021-01-29
(Press-News.org) RIVERSIDE, Calif. -- When we step on the car brake upon seeing a red traffic light ahead, a sequence of events unfolds in the brain at lightning speed.
The image of the traffic light is transferred from our eyes to the visual cortex, which, in turn, communicates to the premotor cortex -- a section of the brain involved in preparing and executing limb movements. A signal is then sent to our foot to step on the brake. However, brain region that helps the body go from "seeing" to "stepping" is still a mystery, frustrating neuroscientists and psychologists.
To unpack this "black box," a team of neuroscientists at the University of California, Riverside, has experimented on mice to identify the brain region that functions beyond sensory encoding and motor encoding, potentially opening up new directions to studying the cellular and circuit mechanisms of sensory-motor transformations. The researchers report a cortical region traditionally defined as whisker motor cortex in mice is most directly related to the transformation process.
In the lab, the researchers trained mice to sense a slight deflection on one side of their whiskers, and report if they sensed it by licking a water port.
"We recorded the neuronal activity of some brain regions that might convey this sensory-motor transformation by using the 'language of neurons' -- the electrical signals -- generated as the mouse performs the task of stimulus detection," said Zhaoran Zhang, a graduate student in the Neuroscience Graduate Program and a co-first author of the research paper published in eNeuro, an open-access journal of the Society of Neuroscience.
Behzad Zareian, a graduate student in the Department of Psychology and a co-first author of the research paper, explained the team used simple but intuitive mathematical tools to transform the neurons' electrical activities to numbers that describe how much the neurons sense the sensory input, how much they reflect the upcoming movement outputs, and how well they predict whether the sensory information can be successfully transformed to a correct behavior.
"We located a brain region traditionally defined as the whisker motor cortex, which was previously believed to influence how a mouse moves its whiskers," Zareian said, "We found this cortical region is capable of transforming the sensory input from whisker deflection to a more general movement action -- licking in this case -- rather than just moving whiskers."
Corresponding author Edward Zagha, an assistant professor of psychology and the team's principle investigator, explained that one difficulty in finding brain regions operating the sensory-motor transformation is that although scientists can measure the sensory- and motor-related brain activities easily in the lab, the inner process that conducts the sensory-motor transformation in the brain is elusive and hard to quantify.
"Our brain represents sensory and motor information in more than one place and often in a redundant manner for multiple purposes such as fine-tuning future movements, enhancing perception or memory storage," Zagha said. "Thus, scientists are now able to distinguish the location of transformation and the regions that merely reflect the sensory or motor information for other purposes. This can vastly improve the use of targeted therapy for patients with sensory- and motor-related brain deficits."
Next, the team plans to focus its research on whisker motor cortex to show what happens within this region to enable the transformation process.
"Interestingly, each cortical region consists of multiple layers and multiple subtype of neurons such as excitatory and inhibitory neurons that are subject to research," Zagha said. "Thus, this expands our knowledge of the neurobiological circuits performing sensory-motor transformations and identifies sites of potential therapeutic intervention to modulate these brain functions."
INFORMATION:
The research was funded by grants from the Whitehall Foundation and National Institutes of Health.
The research paper is titled "Cortical Localization of the Sensory-Motor Transformation in a Whisker Detection Task in Mice."
The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment is more than 25,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email news@ucr.edu.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-01-29
A new report combining forecasting and expert prediction data, predicts that 125,000 lives could be saved by the end of 2021 if 50% or more of the U.S. population initiated COVID vaccination by March 1, 2021.
"Meta and consensus forecast of COVID-19 targets," developed by Thomas McAndrew, a computational scientist and faculty member at Lehigh University's College of Health, and colleagues, incorporates data from experts and trained forecasters, combining their predictions into a single consensus forecast. In addition McAndrew and his team produce a metaforecast, which is a combination of an ensemble of computational models and their consensus forecast.
In addition to predictions related to the impact of vaccinations, ...
2021-01-29
Researchers at Linköping University, Sweden, have developed a proton trap that makes organic electronic ion pumps more precise when delivering drugs. The new technique may reduce drug side effects, and in the long term, ion pumps may help patients with symptoms of neurological diseases for which effective treatments are not available. The results have been published in Science Advances.
Approximately 6% of the world's population suffer from neurological diseases such as epilepsy, Parkinson's disease, and chronic pain. However, currently available drug delivery methods - mainly tablets and injections - place the drug in locations where it is not required. This can lead to side effects ...
2021-01-29
CAMBRIDGE, MA -- In many ways, our brain and our digestive tract are deeply connected. Feeling nervous may lead to physical pain in the stomach, while hunger signals from the gut make us feel irritable. Recent studies have even suggested that the bacteria living in our gut can influence some neurological diseases.
Modeling these complex interactions in animals such as mice is difficult to do, because their physiology is very different from humans'. To help researchers better understa nd the gut-brain axis, MIT researchers have developed an "organs-on-a-chip" system that replicates interactions between the brain, liver, and colon.
Using that system, the researchers were able to model the influence that microbes living in the gut have on both healthy brain tissue and tissue samples derived ...
2021-01-29
An international team of researchers produced islands of amorphous, non-crystalline material inside a class of new metal alloys known as high-entropy alloys.
This discovery opens the door to applications in everything from landing gears, to pipelines, to automobiles. The new materials could make these lighter, safer, and more energy efficient.
The team, which includes researchers from the University of California San Diego and Berkeley, as well as Carnegie Mellon University and University of Oxford, details their findings in the Jan. 29 issue of Science Advances.
"These present ...
2021-01-29
In 2017, the Nobel Prize in Physiology or Medicine went to three scientists who uncovered the molecular mechanisms that control the circadian rhythm, otherwise known as the "wake-sleep" cycle. To carry out their work, the scientists used the common fruit fly Drosophila melanogaster, making this the sixth Nobel to be awarded to research involving it.
Fruitful fruit flies
Life scientists have been using Drosophila for over a century now. First proposed by entomologist Charles W. Woodworth as a model organism, its use in research was pioneered by geneticist Thomas H. Morgan who ran his famous ...
2021-01-29
As any cook knows, some liquids mix well with each other, but others do not. For example, when a tablespoon of vinegar is poured into water, a brief stir suffices to thoroughly combine the two liquids. However, a tablespoon of oil poured into water will coalesce into droplets that no amount of stirring can dissolve. The physics that governs the mixing of liquids is not limited to mixing bowls; it also affects the behavior of things inside cells. It's been known for several years that some proteins behave like liquids, and that some liquid-like proteins don't mix together. However, very little is known about how these liquid-like proteins behave on cellular surfaces.
"The separation between two liquids that won't mix, like oil and water, is known as ...
2021-01-29
January 29, 2021 -- A study at Columbia University Mailman School of Public Health and Columbia University Irving Medical Center has found that Medicaid expansion in 2014 in New York State was associated with a statistically significant reduction in severe maternal morbidity in low-income women during delivery hospitalizations compared with high-income women. The decrease was even more pronounced in racial and ethnic minority women than in White women. Until now there was little research on the link between ACA Medicaid expansion and maternal health outcomes. The findings are published online in the journal of the International Anesthesia Research Society, Anesthesia & Analgesia.
"Our findings indicate that the 2014 ...
2021-01-29
LA JOLLA--(January 29, 2021) As scientists learn more about the microorganisms that colonize the body--collectively called the microbiota--one area of intense interest is the effect that these microbes can have on the brain. A new study led by Salk Institute scientists has identified a strain of E. coli bacteria that, when living in the guts of female mice, causes them to neglect their offspring.
The findings, published January 29, 2021, in the journal Science Advances, show a direct link between a particular microbe and maternal behavior. Although the research was done in mice, it adds to the growing body of science demonstrating that microbes in the gut are important for brain health and can affect development and behavior.
"To our knowledge, this is the first demonstration ...
2021-01-29
Boulder, Colo., USA: Sixteen articles were published online ahead of print for GSA Bulletin in January. Topics include insights from the Sawtooth metamorphic complex in Idaho, fingerprinting sand from ancient rivers, eroding Cascadia, and the Troodos ophiolite.
Three-dimensional geometry and growth of a basement-involved fault network developed during multiphase extension, Enderby Terrace, North West Shelf of Australia
Hongdan Deng; Ken McClay
Abstract: Basement fault reactivation, and the growth, interaction, and linkage with new fault segments are fundamentally three-dimensional and critical for understanding the evolution of fault network development in sedimentary basins. This paper analyzes the evolution of a complex, basement-involved ...
2021-01-29
CHICAGO (January 29, 2021) -- Structural racism thwarts a large proportion of black patients from receiving appropriate lung cancer care, resulting in worse outcomes and shorter lifespans than white patients with the disease, according to research presented at the 57th Annual Meeting of The Society of Thoracic Surgeons.
"Many studies have shown that there are disparities between the outcomes of black and white patients, but have done little to elucidate why these disparities are occurring," said Chandler Annesi, a medical student from Boston University ...
LAST 30 PRESS RELEASES:
[Press-News.org] Scientists solve long-standing mystery by a whisker
UC Riverside mouse study shows where in the brain sensory input is transformed to movement