(Press-News.org) RESEARCH TRIANGLE PARK, N.C. -- Army-funded researchers discovered how to make materials capable of self-propulsion, allowing materials to move without motors or hands.
Researchers at the University of Massachusetts Amherst discovered how to make materials that snap and reset themselves, only relying upon energy flow from their environment. This research, published in Nature Materials and funded by the U.S. Army, could enable future military robots to move from their own energy.
"This work is part of a larger multi-disciplinary effort that seeks to understand biological and engineered impulsive systems that will lay the foundations for scalable methods for generating forces for mechanical action and energy storing structures and materials," said Dr. Ralph Anthenien, branch chief, Army Research Office, an element of the U.S. Army Combat Capabilities Development Command, now known as DEVCOM, Army Research Laboratory. "The work will have myriad possible future applications in actuation and motive systems for the Army and DOD."
Researchers uncovered the physics during a mundane experiment that involved watching a gel strip dry. The researchers observed that when the long, elastic gel strip lost internal liquid due to evaporation, the strip moved. Most movements were slow, but every so often, they sped up.
Scientists discover how to make materials that snap and reset themselves, only relying upon energy flow from their environment. This research could enable future military robots that are able to move off their own energy.
These faster movements were snap instabilities that continued to occur as the liquid evaporated further. Additional studies revealed that the shape of the material mattered, and that the strips could reset themselves to continue their movements.
"Many plants and animals, especially small ones, use special parts that act like springs and latches to help them move really fast, much faster than animals with muscles alone," said Dr. Al Crosby, a professor of polymer science and engineering in the College of Natural Sciences, UMass Amherst. "Plants like the Venus flytraps are good examples of this kind of movement, as are grasshoppers and trap-jaw ants in the animal world."
Snap instabilities are one way that nature combines a spring and a latch and are increasingly used to create fast movements in small robots and other devices as well as toys like rubber poppers.
"However, most of these snapping devices need a motor or a human hand to keep moving," Crosby said. "With this discovery, there could be various applications that won't require batteries or motors to fuel movement."
Scientists discover how future military robots may be able to move off just their own energy.
After learning the essential physics from the drying strips, the team experimented with different shapes to find the ones most likely to react in expected ways, and that would move repeatedly without any motors or hands resetting them. The team even showed that the reshaped strips could do work, such as climb a set of stairs on their own.
"These lessons demonstrate how materials can generate powerful movement by harnessing interactions with their environment, such as through evaporation, and they are important for designing new robots, especially at small sizes where it's difficult to have motors, batteries, or other energy sources," Crosby said.
INFORMATION:
The research team is coordinating with DEVCOM Army Research Laboratory to transfer and transition this knowledge into future Army systems.
DEVCOM Army Research Laboratory is an element of the U.S. Army Combat Capabilities Development Command. As the Army's corporate research laboratory, ARL is operationalizing science to achieve transformational overmatch. Through collaboration across the command's core technical competencies, DEVCOM leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more successful at winning the nation's wars and come home safely. DEVCOM is a major subordinate command of the Army Futures Command.
WASHINGTON -- In a new study, investigators report an optimized approach to using laser-induced breakdown spectroscopy (LIBS) for analyzing hydrogen isotopes. Their new findings could enable improved rapid identification and measurement of hydrogen and other light isotopes that are important in nuclear reactor materials and other applications.
LIBS is promising for measuring hydrogen isotopes because it requires no sample preparation and data can be rapidly acquired with a relatively simple experimental setup. However, quantifying the concentration of hydrogen ...
Oncotarget published "The pro-apoptotic actions of 2-methoxyestradiol against ovarian cancer involve catalytic activation of PKCδ signaling" which reported that the authors have previously shown that a flaxseed-supplemented diet decreases both the incidence and severity of ovarian cancer in laying hens, also induces CYP1A1 expression in liver.
Recently, they have shown that as a biologically derived active component of flax diet, 2MeOE2 induces apoptosis in ovarian cancer cells which is partially dependent on p38 MAPK.
The objective of this Oncotarget study was to elucidate the molecular mechanism of actions of 2MeOE2, a known microtubule disrupting agent, in inducing apoptosis in ovarian tumors.
The objective of this ...
Each year, billions of tons of goods are transported globally using cargo containers. Currently, there are concerns that this immense volume of traffic could be exploited to transport illicit nuclear materials, with little chance of detection. One promising approach to combating this issue is to measure how goods interact with charged particles named muons - which form naturally as cosmic rays interact with Earth's atmosphere. Studies worldwide have now explored how this technique, named 'muon tomography,' can be achieved through a variety of detection technologies and reconstruction algorithms. In this article of EPJ Plus, a team headed by Francesco Riggi at the University of Catania, Italy, build on these results to develop a full-scale muon tomograph ...
As the numbers of those infected with COVID-19 has continued to climb, the desperate need for a vaccine was apparent. Even now with the invention and administration of several COVID-19 vaccinations, the question remains: How effective are these vaccines? HMNTL students Congnyu Che, Weijing Wang, and Nantao Li, also members of the ECE Nanosensors Group, along with Postdoctoral Researcher Bin Zhao and Professor Brian Cunningham have recently been published in Talanta journal for the development of a cost efficient COVID-19 antibody test.
"Compared with other detection methods, our method is a simple, 15-minute sample-to-answer test," says Zhao, a postdoctoral research associate and IGB Fellow. "It costs less ...
People who are unable to make their rent or mortgage payments sleep less than than their peers who don't have such problems, and those who are forced to move because of financial problems sleep even less, according to a new RAND Corporation study.
The study, which followed 1,046 people receiving welfare in California over several years, is the first to analyze the relationship between housing insecurity and sleep outcomes after controlling for sleep duration and sleep quality measured prior to experiences with housing insecurity.
The study found that people who were unable to make a rent or mortgage payment slept on average 22 fewer minutes a night than their peers who were able to make their rent or mortgage payments.
People who were ...
Richard Feynman, one of the most respected physicists of the twentieth century, said "What I cannot create, I do not understand". Not surprisingly, many physicists and mathematicians have observed fundamental biological processes with the aim of precisely identifying the minimum ingredients that could generate them. One such example are the patterns of nature observed by Alan Turing. The brilliant English mathematician demonstrated in 1952 that it was possible to explain how a completely homogeneous tissue could be used to create a complex embryo, and he did so using one of the simplest, most elegant mathematical models ever written. One of the results of such models is that the symmetry shown by a cell or a tissue can "break" under a set of conditions. However, ...
Theoretical physicists of the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz are working on a theory that goes beyond the Standard Model of particle physics and can answer questions where the Standard Model has to pass - for example, with respect to the hierarchies of the masses of elementary particles or the existence of dark matter. The central element of the theory is an extra dimension in spacetime. Until now, scientists have faced the problem that the predictions of their theory could not be tested experimentally. They have now overcome this problem in a publication in the current issue of the European Physical Journal C.
Already in the 1920s, in an attempt to unify the forces of gravity and electromagnetism, Theodor Kaluza and Oskar Klein speculated ...
PHILADELPHIA--Scientists in the Perelman School of Medicine at the University of Pennsylvania have uncovered the molecular causes of a congenital form of dilated cardiomyopathy (DCM), an often-fatal heart disorder.
This inherited form of DCM -- which affects at least several thousand people in the United States at any one time and often causes sudden death or progressive heart failure -- is one of multiple congenital disorders known to be caused by inherited mutations in a gene called LMNA. The LMNA gene is active in most cell types, and researchers have ...
What The Study Did: Researchers used near real-time social media data to capture the public's changing COVID-19-related attitudes when former President Trump was infected.
Authors: Sean D. Young, Ph.D., of the University of California, Irvine, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.0101)
Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional ...
What The Study Did: Researchers looked at changes in the rate of deaths associated with the use of illicit (such as cocaine) and medical stimulants in the United States from 2010 to 2017.
Authors: Joshua C. Black, Ph.D., of Rocky Mountain Poison & Drug Safety in Denver, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamainternmed.2020.7850)
Editor's Note: The article includes conflicts of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial ...