PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

How plants stabilize their water pipes

New techniques allow live-observation of forming cell walls in the vascular tissue

How plants stabilize their water pipes
2021-02-02
(Press-News.org) Trees are by far the tallest organisms on Earth. Height growth is made possible by a specialized vascular system that conducts water from the roots to the leaves with high efficiency, while simultaneously providing stability. The so-called xylem, also known as wood, is a network of hollow cells with extremely strong cell walls that reinforce the cells against the mechanical conflicts arising from growing tall. These walls wrap around the cells in filigree band and spiral patterns. So far, it is only partly known, how these patterns are created. Scientists from the Max Planck Institute for Molecular Plant Physiology in Golm/Potsdam and from Wageningen University and their colleagues study the formation of such reinforced and patterned cell walls.

Plants take up water from the soil via the roots and transport it through a vascular system, the so-called xylem, into the canopy. The xylem is a network of tubular cell wall containers that are formed by living xylem cells during plant growth. Before their death, the cells actively organize the deposition of an exceptionally strong wall - the so-called secondary wall - into band and spiral patterns. After that, the cells dissolve and vacate their interior, and lignify the walls to further provide strength, resilience, and waterproof to these structures. Due to this, xylem cells provide both, an efficient water transportation system and plant stability.

The major load-bearing component of xylem walls is cellulose. To allow the cellulose to form these visually impressive band patterns, it needs the help of various proteins. These include so-called microtubules - small, tubular protein structures that are part of the cytoskeleton - which provide the molecular 'tracks' for the cell-wall-producing machinery. This machinery moves along the microtubules like an asphalt paver and continuously deposits wall material on the outside of the cells. The microtubules thus act like an instruction manual for cell wall synthesis. Despite much research into the general formation of cell walls, it has not yet been clear how the microtubule cytoskeleton is reorganized into such filigree patterns during secondary wall formation.

Arabidopsis with xylem cells

"One problem in elucidating these mechanisms has been the deep-tissue localization of the xylem, being buried underneath many cell layers. Due to this, it cannot be observed directly. We are using a genetic engineering approach to make this process visible under the microscope", explains René Schneider from the Max Planck Institute for Molecular Plant Physiology. The researchers used Arabidopsis thaliana (thale cress), an inconspicuous weed and model plant for research, and modified it in that way, that all its cells can be forced to form xylem and thus secondary cell walls. "For this purpose, we have equipped our plants with a 'gene switch'. This makes it possible to trigger the mechanism of xylem development from the outside in a targeted manner. By that, all cells in the plant are becoming xylem cells, particularly the ones at the surface which are easy to study with high-resolution microscopy", Schneider describes. With this method, it is possible for the first time to observe xylem cells and their wall patterns as they develop.

Using this new tool, the researchers describe which processes drive the rearrangement of the microtubules during xylem formation. They developed an automatic imaging method and observed that the microtubule bands and spirals form simultaneously over the entire cell surface and the resulting pattern is further adjusted until an orderly distribution of bands is achieved. During this process, the microtubules in the gaps are continuously broken down while they are growing in the bands.

The re-arrangement into parallel, evenly spaced bands takes about one to two hours and is maintained for the remaining time. The entire transformation process of a cell to become a proper xylem cell requires several days in total. With the help of their observation in plants and by using computer simulations, the team of scientists was also able to identify a protein complex, KATANIN, which turned out to be involved in the timely and orderly formation of secondary walls.

Based on these findings, Dr. René Schneider will further pursue the research question of how exactly the patterns of secondary walls are formed in plants. Therefore, he is supported by the German Research Foundation (DFG) under the renowned Emmy-Noether-Program to establish a research group at the University of Potsdam. The research group is funded with 1.3 million Euros and will use in-vivo (in living plants), in-vitro (in the laboratory; outside the plant), as well as computer-based methods to further explore the genetics and biophysics of cell wall pattern formation. The group's work is not only of interest for plant research, but could also contribute to the adaptation of plants to the future climate, since the survival of trees in a changing climate depends largely on the adaptability of xylem vessels. The identification of proteins and associated genes that adapt the vascular system to environmental conditions could help to identify or even genetically engineer more climate-resistant plant species.

INFORMATION:

Original publication René Schneider, Kris van 't Klooster, Kelsey L. Picard, Jasper van der Gucht, Taku Demura, Marcel Janson, Arun Sampathkumar, Eva E. Deinum, Tijs Ketelaar, Staffan Persson
Long-term single-cell imaging and simulations of microtubules reveal principles behind wall pattering during proto-xylem development
Nature Communication, 28 January 2021, doi: 10.1038/s41467-021-20894-1


[Attachments] See images for this press release:
How plants stabilize their water pipes

ELSE PRESS RELEASES FROM THIS DATE:

Novel photocatalyst effectively turns carbon dioxide into methane fuel with light

Novel photocatalyst effectively turns carbon dioxide into methane fuel with light
2021-02-02
Carbon dioxide (CO2) is one of the major greenhouse gases causing global warming. If carbon dioxide could be converted into energy, it would be killing two birds with one stone in addressing the environmental issues. A joint research team led by City University of Hong Kong (CityU) has developed a new photocatalyst which can produce methane fuel (CH4) selectively and effectively from carbon dioxide using sunlight. According to their research, the quantity of methane produced was almost doubled in the first 8 hours of the reaction process. The research was led by Dr Ng Yun-hau, Associate Professor in the ...

New study strengthens claims Richard III murdered 'the Princes in the Tower'

New study strengthens claims Richard III murdered the Princes in the Tower
2021-02-02
King Richard III's involvement in one of the most notorious and emotive mysteries in English history may be a step closer to being confirmed following a new study by Professor Tim Thornton of the University of Huddersfield. Richard has long been held responsible of the murder of his nephews King Edward V and his brother, Richard, duke of York - dubbed 'the Princes in the Tower' - in a dispute about succession to the throne. The pair were held in the Tower of London, but disappeared from public view in 1483 with Richard taking the blame following his death two years later. It has become of the most ...

Tesla's advantage: EVs cannot succeed without developing parallel supercharging networks

2021-02-02
In the United States only about 1.3 percent of all vehicles sold last year were battery powered. And about 90 percent of those sales were by one company -- Tesla. What has Tesla done right and where have other electric vehicle makers gone wrong? Electric vehicles cannot succeed without developing a nationwide network of fast-charging networks in parallel with the cars. Current EV business models are doomed unless manufacturers that have bet their futures on them, like General Motors and VW, invest in or coordinate on a robust supercharger network. These are the observations in an in-depth study of the industry by management professors at the University of California, Davis, and Dartmouth College. The researchers explain that big ...

Neutrons probe molecular behavior of proposed COVID-19 drug candidates

Neutrons probe molecular behavior of proposed COVID-19 drug candidates
2021-02-02
As the scientific community continues researching the novel coronavirus, experts are developing new drugs and repurposing existing ones in hopes of identifying promising candidates for treating symptoms of COVID-19. Scientists can analyze the molecular dynamics of drug molecules to better understand their interactions with target proteins in human cells and their potential for treating certain diseases. Many studies examine drug molecules in their dry, powder form, but less is known about how such molecules behave in a hydrated environment, which is characteristic of human cells. Using neutron experiments and computer ...

New discovery for how the brain 'tangles' in Alzheimer's Disease

New discovery for how the brain tangles in Alzheimers Disease
2021-02-02
University of Queensland researchers have discovered a new 'seeding' process in brain cells that could be a cause of dementia and Alzheimer's disease. UQ's Queensland Brain Institute dementia researcher Professor Jürgen Götz said the study revealed that tangled neurons, a hallmark sign of dementia, form in part by a cellular process that has gone astray and allows a toxic protein, tau, to leak into healthy brain cells. "These leaks create a damaging seeding process that causes tau tangles and ultimately lead to memory loss and other impairments," Professor Götz said. Professor Götz said until now researchers did not understand how tau seeds were able to escape after ...

Nasal spray that protects against COVID-19 is also effective against the common cold

Nasal spray that protects against COVID-19 is also effective against the common cold
2021-02-02
Research into a new drug which primes the immune system in the respiratory tract and is in development for COVID-19 shows it is also effective against rhinovirus. Rhinovirus is the most common respiratory virus, the main cause of the common cold and is responsible for exacerbations of chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease. In a study recently published in the European Respiratory Journal (LINK), the drug, known as INNA-X, is shown to be effective in a pre-clinical infection model and in human airway cells. Treatment with INNA-X prior to infection with rhinovirus significantly reduced viral load and inhibited harmful inflammation. University of Newcastle and Hunter Medical Research Institute (HMRI) researcher Associate Professor ...

Highly deformable piezoelectric nanotruss for tactile electronics

Highly deformable piezoelectric nanotruss for tactile electronics
2021-02-02
With the importance of non-contact environments growing due to COVID-19, tactile electronic devices using haptic technology are gaining traction as new mediums of communication. Haptic technology is being applied in a wide array of fields such as robotics or interactive displays. haptic gloves are being used for augmented information communication technology. Efficient piezoelectric materials that can convert various mechanical stimuli into electrical signals and vice versa are a prerequisite for advancing high-performing haptic technology. A research team led by Professor Seungbum Hong confirmed the potential of tactile devices by developing ceramic piezoelectric materials that are three times more deformable. For the fabrication of highly deformable nanomaterials, the ...

Youth with autism see sharp decline in physical activity between ages 9-13

2021-02-02
A recent study from Oregon State University has found that to best help kids with autism maintain healthy rates of physical activity, interventions should be targeted during the ages of 9 to 13, as that's when kids show the biggest drop in active time. The study is one of the first to look at this issue on a longitudinal scale. It relied on a dataset of families in Ireland spanning three in-depth interviews between 2007 and 2016. Kids in the survey had their first interview at age 9, the second at 13 and the third at 17 or 18. The OSU study compared 88 children with autism to 88 children without autism over the nine-year survey period to gauge both how physical activity changed over time, and how much ...

Non-metallic electronic regulation in CuCo oxy-/thio-spinel as OER electrocatalysts

Non-metallic electronic regulation in CuCo oxy-/thio-spinel as OER electrocatalysts
2021-02-02
Oxygen evolution reaction (OER), as a vital half-reaction in some clean energy storage and conversion technologies including rechargeable metal-air batteries, regenerative fuel cells and electrochemical water splitting, has been of crucial importance for exploring highly efficient sustainable energy to substitute exhaustible fossil fuels. Among them, electrochemical water splitting can effectively produce clean and reproducible hydrogen fuels through renewable energy sources as power input like solar energy, etc. Unfortunately, the efficiency of water splitting is mainly impeded by the high anodic overpotential of OER, in which seeking efficient and stable electrocatalysts is highly desirable. It has been considered that spinel-structure materials can be meaningful alternative catalysts ...

Tsunamis and tsunami warning: recent progress and future prospects

Tsunamis and tsunami warning: recent progress and future prospects
2021-02-02
Tsunamis are one of the most destructive disasters in the ocean. Large tsunamis are mostly generated by earthquakes, and they can propagate across the ocean without significantly losing energy. During the shoaling process in coastal areas, the wave amplitude increases dramatically, causing severe life loss and property damage. There have been frequent tsunamis since the 21st century, drawing the attention of many countries on the study of tsunami mechanism and warning. Tsunami records also play an essential role in deriving earthquake rupture models in subduction zones. A recent paper entitled "Tsunamis and tsunami warning: recent progress and future prospects" by Dr. Chao An from Shanghai Jiao Tong University reviews the recent research progress of earthquake-generated ...

LAST 30 PRESS RELEASES:

Emory-led Lancet review highlights racial disparities in sudden cardiac arrest and death among athletes

A new approach to predicting malaria drug resistance

Coral adaptation unlikely to keep pace with global warming

Bioinspired droplet-based systems herald a new era in biocompatible devices

A fossil first: Scientists find 1.5-million-year-old footprints of two different species of human ancestors at same spot

The key to “climate smart” agriculture might be through its value chain

These hibernating squirrels could use a drink—but don’t feel the thirst

New footprints offer evidence of co-existing hominid species 1.5 million years ago

Moral outrage helps misinformation spread through social media

U-M, multinational team of scientists reveal structural link for initiation of protein synthesis in bacteria

New paper calls for harnessing agrifood value chains to help farmers be climate-smart

Preschool education: A key to supporting allophone children

CNIC scientists discover a key mechanism in fat cells that protects the body against energetic excess

Chemical replacement of TNT explosive more harmful to plants, study shows

Scientists reveal possible role of iron sulfides in creating life in terrestrial hot springs

Hormone therapy affects the metabolic health of transgender individuals

Survey of 12 European countries reveals the best and worst for smoke-free homes

First new treatment for asthma attacks in 50 years

Certain HRT tablets linked to increased heart disease and blood clot risk

Talking therapy and rehabilitation probably improve long covid symptoms, but effects modest

Ban medical research with links to the fossil fuel industry, say experts

Different menopausal hormone treatments pose different risks

Novel CAR T cell therapy obe-cel demonstrates high response rates in adult patients with advanced B-cell ALL

Clinical trial at Emory University reveals twice-yearly injection to be 96% effective in HIV prevention

Discovering the traits of extinct birds

Are health care disparities tied to worse outcomes for kids with MS?

For those with CTE, family history of mental illness tied to aggression in middle age

The sound of traffic increases stress and anxiety

Global food yields have grown steadily during last six decades

Children who grow up with pets or on farms may develop allergies at lower rates because their gut microbiome develops with more anaerobic commensals, per fecal analysis in small cohort study

[Press-News.org] How plants stabilize their water pipes
New techniques allow live-observation of forming cell walls in the vascular tissue