Iron release may contribute to cell death in heart failure
A new study shows that the release of stored iron in heart cells may contribute to heart failure, suggesting potential new approaches to treatment
2021-02-02
(Press-News.org) A process that releases iron in response to stress may contribute to heart failure, and blocking this process could be a way of protecting the heart, suggests a study in mice published today in eLife.
People with heart failure often have an iron deficiency, leading some scientists to suspect that problems with iron processing in the body may play a role in this condition. The study explains one way that iron processing may contribute to heart failure and suggests potential treatment approaches to protect the heart.
"Iron is essential for many processes in the body including oxygen transport, but too much iron can lead to a build-up of unstable oxygen molecules that can kill cells," says first author Jumpei Ito, who was a Research Associate at the School of Cardiovascular Medicine and Sciences, King's College London, UK, at the time the study was carried out, and is now a visiting scientist based at Osaka Medical College, Japan. "We already knew that iron metabolism undergoes changes in heart failure, but it was unclear whether these changes are helpful or harmful."
To learn more about the role of iron metabolism in heart failure, Ito and colleagues studied mice lacking a protein called the nuclear receptor coactivator 4 (NCOA4), which is necessary to release iron stored in cells when the body's iron levels are low. They found that these mice developed less severe changes associated with heart failure compared to mice with NCOA4. Specifically, the NCOA4-deficient mice did not develop excessive levels of iron or a build-up of unstable oxygen molecules that can lead to cell death in heart failure.
A compound called ferrostatin-1 inhibits the release of stored iron and reduces the accumulation of unstable oxygen molecules. Further experiments by the team showed that treating mice with NCOA4 with ferrostatin-1 can reduce the amount of cell death in heart failure. "Our results suggest that the release of iron can be detrimental to the heart," Ito says. "It can lead to unstable oxygen levels, death in heart cells and ultimately heart failure."
More studies are now needed to understand each step in the process that releases iron and to test whether inhibiting this process could be beneficial to people with heart failure.
"Patients with heart failure who are iron deficient are currently treated with iron supplements, which previous studies have shown reduces their symptoms," adds senior author Kinya Otsu, the British Heart Foundation Professor of Cardiology at King's College London. "While our work does not contradict those studies, it does suggest that reducing iron-dependent cell death in the heart could be a potential new treatment strategy for patients."
INFORMATION:
Reference
The paper 'Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice' can be freely accessed online at https://doi.org/10.7554/eLife.62174. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.
Media contact
Emily Packer,
Media Relations Manager
eLife
e.packer@elifesciences.org
01223 855373
About eLife
eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Biochemistry and Chemical Biology, and Medicine, while exploring creative new ways to improve how research is assessed and published. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.
To read the latest Biochemistry and Chemical Biology research published in eLife, visit https://elifesciences.org/subjects/biochemistry-chemical-biology.
And for the latest in Medicine, see https://elifesciences.org/subjects/medicine.
ELSE PRESS RELEASES FROM THIS DATE:
2021-02-02
Trees are by far the tallest organisms on Earth. Height growth is made possible by a specialized vascular system that conducts water from the roots to the leaves with high efficiency, while simultaneously providing stability. The so-called xylem, also known as wood, is a network of hollow cells with extremely strong cell walls that reinforce the cells against the mechanical conflicts arising from growing tall. These walls wrap around the cells in filigree band and spiral patterns. So far, it is only partly known, how these patterns are created. Scientists from the Max Planck Institute for Molecular Plant Physiology in Golm/Potsdam and from ...
2021-02-02
Carbon dioxide (CO2) is one of the major greenhouse gases causing global warming. If carbon dioxide could be converted into energy, it would be killing two birds with one stone in addressing the environmental issues. A joint research team led by City University of Hong Kong (CityU) has developed a new photocatalyst which can produce methane fuel (CH4) selectively and effectively from carbon dioxide using sunlight. According to their research, the quantity of methane produced was almost doubled in the first 8 hours of the reaction process.
The research was led by Dr Ng Yun-hau, Associate Professor in the ...
2021-02-02
King Richard III's involvement in one of the most notorious and emotive mysteries in English history may be a step closer to being confirmed following a new study by Professor Tim Thornton of the University of Huddersfield.
Richard has long been held responsible of the murder of his nephews King Edward V and his brother, Richard, duke of York - dubbed 'the Princes in the Tower' - in a dispute about succession to the throne. The pair were held in the Tower of London, but disappeared from public view in 1483 with Richard taking the blame following his death two years later.
It has become of the most ...
2021-02-02
In the United States only about 1.3 percent of all vehicles sold last year were battery powered. And about 90 percent of those sales were by one company -- Tesla. What has Tesla done right and where have other electric vehicle makers gone wrong?
Electric vehicles cannot succeed without developing a nationwide network of fast-charging networks in parallel with the cars. Current EV business models are doomed unless manufacturers that have bet their futures on them, like General Motors and VW, invest in or coordinate on a robust supercharger network. These are the observations in an in-depth study of the industry by management professors at the University of California, Davis, and Dartmouth College.
The researchers explain that big ...
2021-02-02
As the scientific community continues researching the novel coronavirus, experts are developing new drugs and repurposing existing ones in hopes of identifying promising candidates for treating symptoms of COVID-19.
Scientists can analyze the molecular dynamics of drug molecules to better understand their interactions with target proteins in human cells and their potential for treating certain diseases. Many studies examine drug molecules in their dry, powder form, but less is known about how such molecules behave in a hydrated environment, which is characteristic of human cells.
Using neutron experiments and computer ...
2021-02-02
University of Queensland researchers have discovered a new 'seeding' process in brain cells that could be a cause of dementia and Alzheimer's disease.
UQ's Queensland Brain Institute dementia researcher Professor Jürgen Götz said the study revealed that tangled neurons, a hallmark sign of dementia, form in part by a cellular process that has gone astray and allows a toxic protein, tau, to leak into healthy brain cells.
"These leaks create a damaging seeding process that causes tau tangles and ultimately lead to memory loss and other impairments," Professor Götz said.
Professor Götz said until now researchers did not understand how tau seeds were able to escape after ...
2021-02-02
Research into a new drug which primes the immune system in the respiratory tract and is in development for COVID-19 shows it is also effective against rhinovirus. Rhinovirus is the most common respiratory virus, the main cause of the common cold and is responsible for exacerbations of chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease. In a study recently published in the European Respiratory Journal (LINK), the drug, known as INNA-X, is shown to be effective in a pre-clinical infection model and in human airway cells.
Treatment with INNA-X prior to infection with rhinovirus significantly reduced viral load and inhibited harmful inflammation.
University of Newcastle and Hunter Medical Research Institute (HMRI) researcher Associate Professor ...
2021-02-02
With the importance of non-contact environments growing due to COVID-19, tactile electronic devices using haptic technology are gaining traction as new mediums of communication.
Haptic technology is being applied in a wide array of fields such as robotics or interactive displays. haptic gloves are being used for augmented information communication technology. Efficient piezoelectric materials that can convert various mechanical stimuli into electrical signals and vice versa are a prerequisite for advancing high-performing haptic technology.
A research team led by Professor Seungbum Hong confirmed the potential of tactile devices by developing ceramic piezoelectric materials that are three times more deformable. For the fabrication of highly deformable nanomaterials, the ...
2021-02-02
A recent study from Oregon State University has found that to best help kids with autism maintain healthy rates of physical activity, interventions should be targeted during the ages of 9 to 13, as that's when kids show the biggest drop in active time.
The study is one of the first to look at this issue on a longitudinal scale. It relied on a dataset of families in Ireland spanning three in-depth interviews between 2007 and 2016. Kids in the survey had their first interview at age 9, the second at 13 and the third at 17 or 18.
The OSU study compared 88 children with autism to 88 children without autism over the nine-year survey period to gauge both how physical activity changed over time, and how much ...
2021-02-02
Oxygen evolution reaction (OER), as a vital half-reaction in some clean energy storage and conversion technologies including rechargeable metal-air batteries, regenerative fuel cells and electrochemical water splitting, has been of crucial importance for exploring highly efficient sustainable energy to substitute exhaustible fossil fuels. Among them, electrochemical water splitting can effectively produce clean and reproducible hydrogen fuels through renewable energy sources as power input like solar energy, etc. Unfortunately, the efficiency of water splitting is mainly impeded by the high anodic overpotential of OER, in which seeking efficient and stable electrocatalysts is highly desirable. It has been considered that spinel-structure materials can be meaningful alternative catalysts ...
LAST 30 PRESS RELEASES:
[Press-News.org] Iron release may contribute to cell death in heart failure
A new study shows that the release of stored iron in heart cells may contribute to heart failure, suggesting potential new approaches to treatment