PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

NANOGrav finds possible 'first hints' of low-frequency gravitational wave background

NANOGrav finds possible 'first hints' of low-frequency gravitational wave background
2021-02-04
(Press-News.org) In data gathered and analyzed over 13 years, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) Physics Frontiers Center (PFC) has found an intriguing low-frequency signal that may be attributable to gravitational waves.

NANOGrav researchers - including a number from West Virginia University's (WVU's) Department of Physics and Astronomy and the Center for Gravitational Waves and Cosmology - measure the times of arrival of radio pulses from exotic stars called pulsars with large radio telescopes, including the Green Bank Telescope (GBT) in Pocahontas County, West Virginia. Pulsars are small, dense stars that rapidly rotate, emitting beamed radio waves, much like a lighthouse. The results from this most recent dataset show perturbations in the arrival times from these pulsars that may indicate the effects of gravitational waves, as reported recently in The Astrophysical Journal Letters. The most likely source of these gravitational waves is the combined signal from all the supermassive black hole pairs at the cores of merged, distant galaxies.

NANOGrav has been able to rule out some effects other than gravitational waves, such as interference from the matter in our own solar system or certain errors in the data collection. These newest findings set up direct detection of gravitational waves as the possible next major step for NANOGrav and other members of the International Pulsar Timing Array (IPTA), a collaboration of researchers using the world's largest radio telescopes.

Dustin Madison, a postdoctoral researcher at WVU, comments "We can't yet say with confidence that what we're seeing is gravitational waves, but if it is, the "signal" makes a lot of sense given what we think we know about supermassive black holes. This was always how this was going to play out...enticing hints of a signal before we would be able to definitively claim a detection. We're on the right track to make that definitive assessment in just a couple of years." Looking to the future, he thinks researchers will then be able to characterize the signal and learn more from it for years and years to come.

Gravitational waves are ripples in space-time caused by the movements of incredibly massive objects, such as black holes orbiting each other or neutron stars colliding. Astronomers cannot observe these waves with a telescope like they do stars and galaxies. Instead, they measure the effects passing gravitational waves have, namely tiny changes to the precise position of objects - including the position of the Earth itself. Gravitational waves were first detected in 2015 by NSF's Laser Interferometer Gravitational-Wave Observatory (LIGO) by a team including other researchers at WVU. Like light from distant objects, gravitational waves are a cosmic messenger signal - one that holds great potential for understanding "dark" objects, like black holes.

NANOGrav chose to study the signals from pulsars because they serve as detectable, dependable Galactic clocks. These small, dense stars spin rapidly, sending pulses of radio waves at precise intervals toward Earth. Pulsars are in fact commonly referred to as the universe's timekeepers, and this unique trait has made them useful for astronomical study.

But gravitational waves can interrupt this observed regularity, as the ripples cause space-time to undergo tiny amounts of stretching and shrinking. Those ripples result in extremely small deviations in the expected times for pulsar signals arriving on Earth. Such deviations indicate that the position of the Earth has shifted slightly. By studying the timing of the regular signals from many pulsars scattered over the sky at the same time, known as a "pulsar timing array," NANOGrav works to detect minute changes in the Earth's position due to gravitational waves stretching and shrinking space-time.

WVU Professor and NANOGrav member Sarah Burke-Spolaor explains "This signal is incredibly enticing. It could be that our orchestra is tuning up, hinting that we're about to hear the grand symphony of waves from supermassive black holes that we expect pervades the Universe," Burke-Spolaor reflects. She adds, "If this signal is indeed gravitational waves, future study will offer unique insights into how the biggest black holes and galaxies in our universe form and evolve".

"NANOGrav has been building to the first detection of low frequency gravitational waves for over a decade and today's announcement shows that they are on track to achieving this goal," said Pedro Marronetti, NSF Program Director for gravitational physics. "The insights that we will gain on cosmology and galaxy formation are truly unparalleled."

NANOGrav is a collaboration of U.S. and Canadian astrophysicists and a National Science Foundation Physics Frontiers Center (PFC). Maura McLaughlin, WVU Professor and Co-Director of the NANOGrav PFC, added "We are so grateful for the support of the NANOGrav PFC, that's allowed us to dramatically increase both the number of pulsars being timed and the number of participants working on NANOGrav research over the past six years". WVU has played a significant role in the PFC; 12 of the 63 authors on this paper are WVU faculty, postdocs, and students. And low-frequency gravitational wave detection is one of the main aims of the Center for Gravitational Waves and Cosmology, formed in 2015 along with the award of the PFC. As, Duncan Lorimer, WVU Professor and Eberly College Associate Dean for Research, notes "The long-term institutional support provided by the College and University has played a critical role in NANOGrav's success since its inception in 2007".

NANOGrav created their pulsar timing array by studying 47 of the most stably rotating "millisecond pulsars" with both the GBT and the Arecibo Observatory in Puerto Rico as reported in the January 2021 Astrophysical Journal Supplements. Not all pulsars can be used to detect the signals that NANOGrav seeks - only the most stably rotating and longest-studied pulsars will do. These pulsars spin hundreds of times a second, with incredible stability, which is necessary to obtain the precision required to detect and study gravitational waves.

Of the 47 pulsars studied, 45 had sufficiently long datasets of at least three years to use for the analysis. Researchers studying the data uncovered a spectral signature, a low-frequency noise feature, that is the same across multiple pulsars. The timing changes NANOGrav studies are so small that the evidence is not apparent when studying any individual pulsar, but in aggregate, they add up to a significant signature.

Potential Next Steps

To confirm direct detection of a signature from gravitational waves, NANOGrav's researchers will have to find a distinctive pattern in the signals between individual pulsars. At this point, the sensitivity of the experiment is not currently good enough for such a pattern to be distinguishable. Boosting the signal requires NANOGrav to expand its dataset to include more pulsars studied for even longer lengths of time, which will increase the array's sensitivity. In addition, by pooling NANOGrav's data together with those from other pulsar timing array experiments, a joint effort by the IPTA may reveal such a pattern. Students and faculty at WVU are important contributors to this effort, and in fact 24 WVU students have traveled to IPTA partner countries to undertake research abroad as part of NSF-funded programs led by WVU.

At the same time, NANOGrav is developing techniques to ensure the detected signal could not be from another source. They are producing computer simulations that help test whether the detected noise could be caused by effects other than gravitational waves, in order to avoid a false detection.

While the next several years hold a great deal of scientific promise, they are not without challenges. With the recent collapse of the Arecibo Observatory's 305-meter telescope, NANOGrav will be seeking alternate sources of data and working even more closely with their international colleagues. Although significant delays in detection are not expected, due to years of very sensitive Arecibo data already contributing to their datasets, the loss of Arecibo is a terrible blow to science in general. For NANOGrav, it may impact the ability to characterize the background and detect other types of gravitational-wave sources in the future in the absence of another instrument. The loss of the telescope also directly impacts the graduate studies of several WVU PhD students. NANOGrav members are deeply saddened by the collapse and its impact on the staff and the island of Puerto Rico.

INFORMATION:

Publications referenced in this article

Gravitational Wave Search:
https://iopscience.iop.org/article/10.3847/2041-8213/abd401

Narrowband Dataset:
https://iopscience.iop.org/article/10.3847/1538-4365/abc6a0

Wideband Dataset:
https://iopscience.iop.org/article/10.3847/1538-4365/abc6a1

For more information about NANOGrav, please visit the website at http://nanograv.org.

NANOGrav research at WVU is supported through NSF PFC award #1430284 and NSF OIA award #1458952. The Arecibo Observatory is a facility of the National Science Foundation operated under cooperative agreement (#AST-1744119) by the University of Central Florida (UCF) in alliance with Universidad Ana G. Méndez (UAGM) and Yang Enterprises (YEI), Inc. The Green Bank Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.


[Attachments] See images for this press release:
NANOGrav finds possible 'first hints' of low-frequency gravitational wave background

ELSE PRESS RELEASES FROM THIS DATE:

New eco-friendly technique protects rice plants against devastating fungal infection

New eco-friendly technique protects rice plants against devastating fungal infection
2021-02-04
Researchers have developed a new technique to protect rice seeds against fungal infections that can ruin up to half of all rice crops in the world. The biocontrol method, which involves inoculation of flowers with a different fungus that doesn't cause disease and using seeds harvested from the flower to grow crops, is even better at protecting rice plants from diseases than existing fungicide approaches, and could also be used against similar pathogens that affect other staple crops. The extremely destructive seedborne bakanae disease, which affects rice plants everywhere in the world that the staple crop is grown, is currently typically combatted with either chemical fungicides or ...

New combination therapy offers chance of healing hepatitis B

New combination therapy offers chance of healing hepatitis B
2021-02-04
The new therapeutic approach is based on shutting down the viral hepatitis B genome located in the nucleus of infected liver cells. Upon infection of the liver cell, the viral genome is transformed inside the nucleus into a closed circular DNA molecule. This deoxyribonucleic acid is a stable molecule known as covalently closed circular DNA (cccDNA) and serves as the template for the production of new viruses. The cccDNA represents the central reservoir of the hepatitis B viruses and enables their persistence in the liver. The virologist Prof. Dr. Maura Dandri and her team at the UKE managed to prevent the HBV-cccDNA from producing further viruses in the animal model. The point of attack of their ...

'Stealthy' stem cells better for treating tendon injuries in horses

2021-02-04
Treating equine donor stem cells with a growth factor called TGF-β2 may allow them to avoid "tripping" the immune response in recipients, according to new research from North Carolina State University. The work could simplify the stem cell treatment process for ligament and tendon injuries in horses, and may also have implications for human stem cell therapies. Mesenchymal stem cell therapy is a promising avenue for treating musculoskeletal injuries - particularly tendon and ligament injuries - in horses. Mesenchymal stem cells are adult stem cells found in bone marrow that act as repair directors, producing secretions that recruit paracrine, or healing, factors to the site of injury. Just as blood cells have "types," ...

Stanford research could lead to injectable gels that release medicines over time

2021-02-04
Gels are formed by mixing polymers into fluids to create gooey substances useful for everything from holding hair in place to enabling contact lenses to float over the eye. Researchers want to develop gels for healthcare applications by mixing in medicinal compounds, and giving patients injections so that the gel releases the active pharmaceutical ingredient over a period of months to avoid weekly or daily needle sticks. But standing in the way is a problem that's as easily understandable as the difference between using hair gel on a beach versus in a ...

Exercise caution after working out in virtual reality

Exercise caution after working out in virtual reality
2021-02-04
Virtual 'exergaming' has become a popular way to exercise - especially among younger people - since the release of virtual reality (VR) fitness games on consoles such as Nintendo and Playstation. But while VR is undoubtedly raising fitness games to a whole new level, researchers at the University of South Australia are cautioning players about the potential side effects of VR, particularly in the first hour after playing. In a new study published in the Journal of Medical Internet Research, UniSA researchers investigated the consequences of playing one of the most popular VR exergames - Beat Saber* - finding that one in seven players still ...

Polymer-derived carbon as metal-free, "green" alternative to catalysts and nano carbons

2021-02-04
Catalysts are key materials in modern society, enabling selective conversion of raw materials into valuable products while reducing waste and saving energy. In case of industrially relevant oxidative dehydrogenation reactions, most known catalyst systems are based on transition metals such as Iron, Vanadium, Molybdenum or Silver. Due to intrinsic drawbacks associated with the use of transition metals, such as rare occurrence, environmentally harmful mining processes, and toxicity, the fact that pure carbon exhibits catalytic activity in this type of reaction and thus has high potential as a sustainable substitution material is of high interest. To date, the development of carbon-based catalysts for oxidative dehydrogenation reactions may be divided into two ...

Fossil pigments shed new light on vertebrate evolution

Fossil pigments shed new light on vertebrate evolution
2021-02-04
UCC palaeontologists have discovered new evidence that the fate of vertebrate animals over the last 400 million years has been shaped by microscopic melanin pigments. This new twist in the story of animal evolution is based on cutting-edge analyses of melanin granules - melanosomes - in many different fossil and modern vertebrates, including fish, amphibians, reptiles, birds and mammals. Melanin and melanosomes have traditionally been linked to outermost body tissues such as skin, hair and feathers, with important roles in UV protection and stiffening of tissues. Analyses of where different animals store melanin in the body, however, show that different vertebrate groups concentrate melanin in different organs, revealing ...

Innovation from Vienna: Ultrasound in the treatment of brain diseases

2021-02-04
Ultrasound is not only used as an imaging technique but targeted pulses of ultrasound can be used as a highly accurate treatment for a range of brain diseases, for which there were previously only limited treatment options. Over the last few years, several revolutionary techniques of this kind have been developed, primarily in Toronto but also at MedUni Vienna. The Viennese technique improves brain functions by externally activating neurons that are still functional. Improvements can be expected in various neuropsychiatric brain diseases such as Alzheimer's, Parkinson's, stroke, Multiple Sclerosis, and neuralgia. A review jointly written by ...

NUI Galway demonstrate the promise of precision genomics in cancer treatment

2021-02-04
Researchers at NUI Galway have identified genomic signatures in women developing the most common type of breast cancer that can be associated with long-term survival. The NUI Galway team analysed the genomes of breast cancer patients to look for associations with survival rates using advanced statistical techniques. Carried out by Lydia King during her studies in NUI Galway's MSc in Biomedical Genomics programme, the research has been published in the international journal PLOS ONE. Early detection by national screening programmes and timely treatment for patients diagnosed with "luminal" types of breast cancer have resulted in excellent prognoses with survival rates of over 80% within five years of treatment. The challenge of long-term survival ...

Sweden ahead of Denmark in the public sector organic food race

2021-02-04
FOOD SCIENCE Sweden takes first, Denmark second and Norway lags at the bottom when it comes to how much organic food is served in canteens, kindergartens and other public sector workplaces across the three Nordic nations. This, according to the results of a new report by the University of Copenhagen. The report details plenty of potential for expanding the conversion to organic food service in the Danish public sector--a topic of discussion across the EU at the moment. Plate with potatoes and beef The governments of Denmark, Norway and Sweden are all keen on ramping up the amount of organic food ...

LAST 30 PRESS RELEASES:

Two-way water transfers can ensure reliability, save money for urban and agricultural users during drought in Western U.S., new study shows

New issue of advances in dental research explores the role of women in dental, clinical, and translational research

Team unlocks new insights on pulsar signals

Great apes visually track subject-object relationships like humans do

Recovery of testing for heart disease risk factors post-COVID remains patchy

Final data and undiscovered images from NASA’s NEOWISE

Nucleoporin93: A silent protector in vascular health

Can we avert the looming food crisis of climate change?

Alcohol use and antiobesity medication treatment

Study reveals cause of common cancer immunotherapy side effect

New era in amphibian biology

Harbor service, VAST Data provide boost for NCSA systems

New prognostic model enhances survival prediction in liver failure

China focuses on improving air quality via the coordinated control of fine particles and ozone

Machine learning reveals behaviors linked with early Alzheimer’s, points to new treatments

Novel gene therapy trial for sickle cell disease launches

Engineering hypoallergenic cats

Microwave-induced pyrolysis: A promising solution for recycling electric cables

Cooling with light: Exploring optical cooling in semiconductor quantum dots

Breakthrough in clean energy: Scientists pioneer novel heat-to-electricity conversion

Study finds opposing effects of short-term and continuous noise on western bluebird parental care

Quantifying disease impact and overcoming practical treatment barriers for primary progressive aphasia

Sports betting and financial market data show how people misinterpret new information in predictable ways

Long COVID brain fog linked to lung function

Concussions slow brain activity of high school football players

Study details how cancer cells fend off starvation and death from chemotherapy

Transformation of UN SDGs only way forward for sustainable development 

New study reveals genetic drivers of early onset type 2 diabetes in South Asians 

Delay and pay: Tipping point costs quadruple after waiting

Magnetic tornado is stirring up the haze at Jupiter's poles

[Press-News.org] NANOGrav finds possible 'first hints' of low-frequency gravitational wave background