(Press-News.org) In nuclear physics so-called magic number are such nuclear proton and/or neutron numbers, for which the nucleus is more stable compared to neighboring isotopes on the nuclear chart. Researchers in both experimental and theoretical nuclear physics from University of Jyväskylä, Finland, took part of international research team, which studied the nuclear charge radii of potassium isotopes. Isotopes were studied by using the collinear resonance ionization spectroscopy technique. The results indicated that the potassium isotope with a neutron number of 32 does not conform with criteria of magic neutron number. The results were published in Nature Physics journal on January 2021.
Far from the stable isotopes which we know well from the periodic table, in region of the so-called exotic nuclei, an extreme ratio of protons and neutrons lead to the emergence of new phenomena which test our understanding of the nuclear forces.
One well known feature of these forces is that some nuclei with certain number of protons and/or neutrons are more stable than their neighboring isotopes. We refer to these numbers as magic numbers. They lead to longer half-lives and among others, a smaller size than would be expected for a non-magic nucleus.
In the mass region of the potassium isotopes, 32 was proposed as a new magic number for neutrons. The experimental study of these special regions of the nuclear chart is crucial to unveil new phenomena, and through comparison with state-of-the-art nuclear theory, test how well we understand them.
However, in practice, these isotopes can only be produced at accelerator facilitates, and there only in minute samples. This drives continuous developments in experimental techniques, for increased efficiency and sensitivity to the nuclear properties we wish to measure.
Modification to setup to measure nuclear charge radius of 52K
In this research researchers performed laser spectroscopy studies on the exotic potassium isotopes using the Collinear Resonance Ionization Spectroscopy (CRIS) technique at CERN, ISOLDE.
"For the measurement of the potassium isotope with 33 neutrons (52K), we modified our setup to increase the selectivity of the method, by detecting the decay of this isotope, thus reducing the background noise introduced by stable species. This allowed for the measurement of nuclear charge radius of 52K", says post doctoral researcher Agota Koszorus from the University of Liverpool, who is now based at the University of Jyväskylä.
"If the size of this isotope was significantly larger than its proposed magic neighbor, 51K, we would have confirmed the magic nature of the neutron number 32. However, our results show a continuously increasing trend, implying that 32 neutrons don't have a special stabilizing affecting on the nuclear size", she concludes.
On theory side, the nuclear structure of potassium isotopes were modeled with two different theoretical approaches, namely with the nuclear density functional theory (DFT) and the coupled cluster (CC) theory.
"The DFT is an ideal method for heavier nuclei, whereas CC is more suitable for light and medium mass nuclei. The potassium region offers an ideal meeting ground to test these approaches simultaneously. Both theoretical methods need information about the nuclear interactions. For this purpose, state-of-the art nuclear structure models were applied: The DFT calculations employed highly successful Fayans energy density functional and CC calculations used the latest ab-initio chiral potential", says Associate Professor Markus Kortelainen from the Department of Physics at the University of Jyväskylä.
While both theoretical approaches reproduced the general experimental trend of charge radius isotopic shifts, some shortcomings were noted. The DFT results showed a notable overestimation of charge radius staggering between neighboring odd and even neutron number isotopes, whereas the CC calculations had difficulties to reproduce experimental trend in heavier isotopes. These observations urge to further improve present nuclear structure models.
INFORMATION:
Link to research in Nature Physics, January 2021: Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N ?=?32 | Nature Physics
For further information:
Post doctoral researcher Agota Koszorus, agota.a.koszorus@jyu.fi (in English)
Associate Professor Markus Kortelainen, markus.kortelainen@jyu.fi (also in Finnish)
The Faculty of Mathematics and Science
Communications Specialist Tanja Heikkinen, tanja.s.heikkinen@jyu.fi, +358 50 472 1162
https://www.jyu.fi/science/en
Lead halide perovskites, with high refractive index and excellent optoelectronic property, have been used in both constructing high-quality optical resonators/lasers and fabricating high-efficiency light-emitting devices for advanced displays. Lenticular printing provides an illusion of depth and shows varying images upon view angles, which is considered as a promising approach towards future stereoscopic displays. To realize lenticular-printing-based display, it is required to modulate the outcoupling direction of emission light rather than that of incident light. Ideally, the lenticular-lens-like structures would be integrated into the active layer of light-emitting devices. Therefore, the hybrid perovskite becomes a promising candidate for ...
Researchers at Baylor College of Medicine found that while most individuals responded to respiratory syncytial virus (RSV) natural reinfection with a typical sustained antibody response associated with protection, a few individuals surprisingly responded atypically, not being able to sustain the antibody response, which declined to levels that made the individuals susceptible to RSV reinfection.
The researchers highlight in their study, published in the journal Vaccine, that their findings point at a subpopulation of people who also may not maintain an antibody response to vaccines and suggest the need to characterize patient-specific responses to respiratory viral infections, such as COVID-19.
"RSV is ...
Anyone who's been to a concert knows that something magical happens between the performers and their instruments. It transforms music from being just "notes on a page" to a satisfying experience.
A University of Washington team wondered if artificial intelligence could recreate that delight using only visual cues -- a silent, top-down video of someone playing the piano. The researchers used machine learning to create a system, called Audeo, that creates audio from silent piano performances. When the group tested the music Audeo created with music-recognition ...
Researchers from the University of Ottawa have discovered that plants may be able to control the genetics of their intimate root symbionts - the organism with which they live in symbiosis - thereby providing a better understanding of their growth.
In addition to having a significant impact on all terrestrial ecosystems, their discovery may lead to improved eco-friendly agricultural applications.
We talked to research lead Nicolas Corradi, Associate Professor in the Department of Biology and Research Chair in Microbial Genomics at the University of Ottawa, ...
LA JOLLA, CA--As the opioid epidemic raged on with an even greater force during COVID-19, the Scripps Research laboratory of chemist Kim Janda, PhD, has been working on new therapeutic interventions that may be able to prevent the bulk of deaths from opioid overdose.
Janda and his team have developed experimental vaccines that have shown in rodents to blunt the deadly effects of fentanyl--which has been driving the boom in opioid deaths--as well as its even more fatal cousin, carfentanil, a growing source of overdoses and a chemical terrorist threat.
"Synthetic opioids are not only extremely deadly, but also addictive and easy to manufacture, making them a formidable public health threat, especially when the coronavirus crisis is negatively impacting mental health," says Janda, the Ely ...
A team of researchers led by Columbia University has developed a unique platform to program a layered crystal, producing imaging capabilities beyond common limits on demand.
The discovery is an important step toward control of nanolight, which is light that can access the smallest length scales imaginable. The work also provides insights for the field of optical quantum information processing, which aims to solve difficult problems in computing and communications.
"We were able to use ultrafast nano-scale microscopy to discover a new way to control our crystals with light, turning elusive photonic properties on and off at will," said Aaron Sternbach, postdoctoral researcher ...
Army scientists evaluated three nonhuman primate species as potential models of SARS-CoV-2 airborne infection, according to results published online this week in PLOS ONE. Their work demonstrates that any of these species may be useful for testing vaccines and therapies in response to the COVID-19 pandemic, which has resulted in over 104 million cases and more than 2 million deaths worldwide in the past year.
Given the global impact of COVID-19, experts are working rapidly to develop medical countermeasures, and testing in animal models is critically important to evaluate the efficacy of these products. Recent studies suggest that aerosol ...
Philadelphia, February 4, 2021 - Researchers have leveraged the latest advances in RNA technology and machine learning methods to develop a gene panel test that allows for highly accurate diagnosis of the most common types of liposarcoma. It quickly and reliably distinguishes benign lipomas from liposarcomas and can be performed in laboratories at a lower cost than current "gold standard" tests. The new assay is described in The Journal of Molecular Diagnosis, published by Elsevier.
"Liposarcomas are a type of malignant cancer that is difficult to diagnose because, even under a microscope, it is hard to differentiate liposarcomas from benign tumors or other types ...
An assessment published this week in the journal The Lancet HIV provides new insight about an initiative to integrate treatment of opioid use disorder along with HIV in Vietnam.
The study marks one of the first scientifically robust assessments of a new model of treating HIV in lower or middle income countries where injection drug use is a major cause of HIV infection. It also suggests the importance of building support for peer and community connections to tackle the opioid epidemic that continues to ravage the United States in the midst of the COVID-19 pandemic.
The study was led by scientists and physicians at Hanoi Medical University and Oregon Health & Science University.
"Our study suggests that countries that ...
WOODS HOLE, Mass. -- Egg cells start out as round blobs. After fertilization, they begin transforming into people, dogs, fish, or other animals by orienting head to tail, back to belly, and left to right. Exactly what sets these body orientation directions has been guessed at but not seen. Now researchers at the Marine Biological Laboratory (MBL) have imaged the very beginning of this cellular rearrangement, and their findings help answer a fundamental question.
"The most interesting and mysterious part of developmental biology is the origin of the body axis in animals," said researcher Tomomi Tani. An MBL scientist in the Eugene Bell Center at the time of the research, Tani is now with Japan's National Institute of Advanced Industrial Science and Technology.
The work by Tani and ...