PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Technion researchers discover new pathway for attacking cancer cells

Professor Tomer Shlomi's research group discovered just such a process - one that may be targeted in cancer cells without causing damage to healthy ones, findings that have been published in Cell Metabolism

2021-02-05
(Press-News.org) When treating cancer, researchers are always searching for ways to remove cancer cells while minimizing damage to the rest of the body. One possible approach is to find processes unique to cancer cells, and which would allow specific targeting. If such a process can be disrupted, only those cells would be affected.

A process (or absence thereof) can be unique to some types of cancer, and not be present in others. In such a case, we would want a simple way to recognize whether a particular tumor possesses the unique trait or not. The implication of this question is whether the tumor would respond to this or that treatment, allowing us to match a treatment to the patient who is likely to be helped by it, rather than going by trial and error.

Professor Tomer Shlomi's research group discovered just such a process - one that may be targeted in cancer cells without causing damage to healthy ones, findings that have been published in Cell Metabolism.

The folate cycle is a process essential to DNA and RNA production. As a result, it is highly important to both cancer cells and healthy cells. Because DNA production is a critical stage in cell division, and thus in tumor growth, the folate cycle is a common target for chemotherapy. However, for the very same reason, there are significant side effects to attacking it.

There are, in fact, two folate cycles - one happening in the mitochondria (an organelle inside the cell), and one in the cytosol (the fluid that fills the cell). A healthy cell can switch from one to the other. A variety of tumor cells, Professor Shlomi's group discovered, rely on the cytosolic pathway exclusively. The implication is, if treatment were to target the cytosolic folate cycle, healthy cells would switch to the mitochondrial cycle and would not be harmed, leaving tumor cells to die.

It remains to recognize whether a particular tumor is indeed one in which the mitochondrial folate cycle is non-functional, and here too Shlomi's team provided. RFC is a transporter protein that regulates intracellular folate levels. Low RFC - low folate. Low folate, the group discovered, is devastating to the mitochondrial cycle. So low RFC tumors are the ones that would be affected by cytosolic cycle-blocking treatments.

Both the pathway that may be attacked, and the way to recognize which tumors the attack would be effective against have thus been found.

INFORMATION:



ELSE PRESS RELEASES FROM THIS DATE:

Researchers find a way to increase spatial resolution in brain activity visualization

2021-02-05
Researchers from the HSE Institute for Cognitive Neuroscience have proposed a new method to process magnetoencephalography (MEG) data, which helps find cortical activation areas with higher precision. The method can be used in both basic research and clinical practice to diagnose a wide range of neurological disorders and to prepare patients for brain surgery. The paper describing the algorithm was published in the journal NeuroImage. Magnetoencephalography (MEG) is a method based on measuring very weak magnetic fields (several orders of magnitude weaker than the Earth's magnetic field) induced by the brain's electrical activity. When using MEG, researchers face the complicated task ...

Audiovisual professionalisation affects how the brain perceives media content

Audiovisual professionalisation affects how the brain perceives media content
2021-02-05
Professionalisation in any field requires long-term experience and training. In the past decades, studies have demonstrated that the professionalisation of athletes and artists create differences in the behaviour of the brain while carrying out activities related to their area of expertise. To detect the effects of media professionalisation in the brain, a research team from the Universitat Autònoma de Barcelona, the Instituto Ràdio Televisió Espanyola and the Universidad Pablo de Olavide in Seville conducted a study published in Frontiers in Systems Neuroscience in which audiovisual contents were presented to a group of media ...

Machine learning generates realistic genomes for imaginary humans

Machine learning generates realistic genomes for imaginary humans
2021-02-05
Machines, thanks to novel algorithms and advances in computer technology, can now learn complex models and even generate high-quality synthetic data such as photo-realistic images or even resumes of imaginary humans. A study recently published in the international journal PLOS Genetics uses machine learning to mine existing biobanks and generate chunks of human genomes which do not belong to real humans but have the characteristics of real genomes. "Existing genomic databases are an invaluable resource for biomedical research, but they are either not publicly accessible or shielded behind long and exhausting application procedures due to valid ethical concerns. This creates a major scientific barrier for researchers. Machine-generated genomes, or artificial ...

Tiny sensor technique reveals cellular forces involved in tissue generation

Tiny sensor technique reveals cellular forces involved in tissue generation
2021-02-05
PROVIDENCE, R.I. [Brown University] -- A new technique developed by Brown University researchers reveals the forces involved at the cellular level during biological tissue formation and growth processes. The technique could be useful in better understanding how these processes work, and in studying how they may respond to environmental toxins or drug therapies. As described in the journal Biomaterials, the technique makes use of cell-sized spheres made from a highly compliant polymer material, which can be placed in laboratory cultures of tissue-forming cells. As the tissue-formation process unfolds, microscope imaging of the spheres, which are stained with fluorescent dye, reveals the extent to which they are deformed by the pressure of surrounding cells. A ...

Birds living in natural habits can help inform captive care

2021-02-05
Bird species that live in their natural habitats can help zoos learn how to manage those in captivity, according to a new review. Birds are the most diverse group housed by zoos around the world, but zoo-based research tends not to focus on birds. A new article published in the journal Birds, by Dr Paul Rose of the University of Exeter, suggests zoos can improve management of birds by looking at how species live in their natural habitats. Likewise, birds living under the care of humans can also help guide and develop conservation action for those living in the wild. "Research into wild birds is extremely useful for furthering how birds are managed in zoos," said ...

New research studies 'domino effects' and synchrony in brain activity

2021-02-05
Scientists have made a significant breakthrough in the quest to understand the intricate processes that occur in the brain during seizures that are the key symptom of epilepsy. A team of scientists from the University of Exeter has studied the mechanisms behind distinctive patterns of electrical activity of neuron groups in the brain that accompany the onset of seizures. In healthy brains, networks of neurons move through states of similar behavior - known as synchronization - and dissimilar behavior, called desynchronization. These processes are also associated with both memory and attention. However, in a brain with a neurological disorder, such as epilepsy, ...

Link found between time perception, risk for developmental coordination disorder

Link found between time perception, risk for developmental coordination disorder
2021-02-05
Neuroscientists at McMaster University have found a link between children who are at risk for developmental coordination disorder (DCD), a common condition that can cause clumsiness, and difficulties with time perception such as interpreting changes in rhythmic beats. Accurate time perception is crucial for basic skills such as walking and processing speech and music. "Many developmental disorders, including dyslexia or reading difficulties, autism and attention deficits have been linked to deficits in auditory time perception," says Laurel Trainor, senior author of the study and founding director of the McMaster Institute for Music and the Mind. Previous research has shown the brain ...

Sleep studies in children with sleep disordered breathing could influence treatment

2021-02-05
(Boston)--A new study recommends healthy children with symptoms of sleep disordered breathing, such as snoring or temporary cessation of breathing, should consider undergoing a sleep study (polysomnography) and should discuss the potential benefits of this with their pediatrician or otolaryngologist to possibly manage the child's symptoms medically and before surgery. Sleep disordered breathing is common in children and ranges from mild snoring to severe sleep apnea. Doing a sleep study provides more information on the severity of the condition. Often doctors suggest adenotonsillectomy ...

Establishment testing standards for particulate photocatalysts in solar fuel production proposed

Establishment testing standards for particulate photocatalysts in solar fuel production proposed
2021-02-05
Utilization of renewable solar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development in our society. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. However, efficiency is sensitive to reaction conditions and experimental setup, it is difficult to compare the results obtained by different research groups or provide a reliable guide for large-scale implementation. Due to the ...

Trapping gases better with boron nitride "nanopores"

Trapping gases better with boron nitride nanopores
2021-02-05
What is common between a technology for storing energy in a solar cell and that for water purification? They both rely on the use of porous materials, or more specifically, "nanoporous" materials that can trap gas molecules within narrow spaces on their surface, called "pores", which are only nanometers (one-billionth of a meter) in size! In chemistry parlance, the phenomenon is known as "adsorption" and has played an important role in the synthesis of porous materials of different compositions, pore sizes, and even pore geometries. Traditionally, activated carbon (AC, or a porous form of carbon) has been a popular adsorbent for practical applications owing to its higher capacity of adsorption than that of other porous materials. Lately, however, porous boron ...

LAST 30 PRESS RELEASES:

H.E.S.S. collaboration detects the most energetic cosmic-ray electrons and positrons ever observed

Novel supernova observations grant astronomers a peek into the cosmic past

Association of severe maternal morbidity with subsequent birth

Herodotus' theory on Armenian origins debunked by first whole-genome study

Women who suffer pregnancy complications have fewer children

Home testing kits and coordinated outreach substantially improve colorectal cancer screening rates

COVID-19 vaccine reactogenicity among young children

Generalizability of clinical trials of novel weight loss medications to the US adult population

Wildfire smoke exposure and incident dementia

Health co-benefits of China's carbon neutrality policies highlighted in new review

Key brain circuit for female sexual rejection uncovered

Electrical nerve stimulation eases long COVID pain and fatigue

ASTRO issues update to clinical guideline on radiation therapy for rectal cancer

Mount Sinai opens the Hamilton and Amabel James Center for Artificial Intelligence and Human Health to transform health care by spearheading the AI revolution

Researchers develop tools to examine neighborhood economic effects on spinal cord injury outcomes

Case Western Reserve University awarded $1.5 million to study vaginal bacterial linked to serious health risks

The next evolution of AI begins with ours

Using sunlight to recycle black plastics

ODS FeCrAl alloys endure liquid metal flow at 600 °C resembling a fusion blanket environment

A genetic key to understanding mitochondrial DNA depletion syndrome

The future of edge AI: Dye-sensitized solar cell-based synaptic device

Bats’ amazing plan B for when they can’t hear

Common thyroid medicine linked to bone loss

Vaping causes immediate effects on vascular function

A new clock to structure sleep

Study reveals new way to unlock blood-brain barrier, potentially opening doors to treat brain and nerve diseases

Viking colonizers of Iceland and nearby Faroe Islands had very different origins, study finds

One in 20 people in Canada skip doses, don’t fill prescriptions because of cost

Wildlife monitoring technologies used to intimidate and spy on women, study finds

Around 450,000 children disadvantaged by lack of school support for color blindness

[Press-News.org] Technion researchers discover new pathway for attacking cancer cells
Professor Tomer Shlomi's research group discovered just such a process - one that may be targeted in cancer cells without causing damage to healthy ones, findings that have been published in Cell Metabolism