PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Breakthrough in quantum photonics promises a new era in optical circuits

Method to enable quantum optical circuits that use photons--heralds a new future for secure communication and quantum computing

2021-02-05
(Press-News.org) The modern world is powered by electrical circuitry on a "chip"--the semiconductor chip underpinning computers, cell phones, the internet, and other applications. In the year 2025, humans are expected to be creating 175 zettabytes (175trillion gigabytes) of new data. How can we ensure the security of sensitive data at such a high volume? And how can we address grand-challenge-like problems, from privacy and security to climate change, leveraging this data, especially given the limited capability of current computers?

A promising alternative is emerging quantum communication and computation technologies. For this to happen, however, it will require the widespread development of powerful new quantum optical circuits­; circuits that are capable of securely processing the massive amounts of information we generate every day. Researchers in USC's Mork Family Department of Chemical Engineering and Materials Science have made a breakthrough to help enable this technology.

While a traditional electrical circuit is a pathway along which electrons from an electric charge flow, a quantum optical circuit uses light sources that generate individual light particles, or photons, on-demand, one-at-a-time, acting as information carrying bits (quantum bits or qubits). These light sources are nano-sized semiconductor "quantum dots"-tiny manufactured collections of tens of thousands to a million atoms packed within a volume of linear size less than a thousandth of the thickness of typical human hair buried in a matrix of another suitable semiconductor.

They have so far been proven to be the most versatile on-demand single photon generators. The optical circuit requires these single photon sources to be arranged on a semiconductor chip in a regular pattern. Photons with nearly identical wavelength from the sources must then be released in a guided direction. This allows them to be manipulated to form interactions with other photons and particles to transmit and process information.

Until now, there has been a significant barrier to the development of such circuits. For example, in current manufacturing techniques quantum dots have different sizes and shapes and assemble on the chip in random locations. The fact that the dots have different sizes and shapes mean that the photons they release do not have uniform wavelengths. This and the lack of positional order make them unsuitable for use in the development of optical circuits.

In recently published work, researchers at USC have shown that single photons can indeed be emitted in a uniform way from quantum dots arranged in a precise pattern. It should be noted that the method of aligning quantum dots was first developed at USC by the lead PI, Professor Anupam Madhukar, and his team nearly thirty years ago, well before the current explosive research activity in quantum information and interest in on-chip single-photon sources. In this latest work, the USC team has used such methods to create single-quantum dots, with their remarkable single-photon emission characteristics. It is expected that the ability to precisely align uniformly-emitting quantum dots will enable the production of optical circuits, potentially leading to novel advancements in quantum computing and communications technologies.

The work, published in APL Photonics, was led by Jiefei Zhang, currently a research assistant professor in the Mork Family Department of Chemical Engineering and Materials Science, with corresponding author Anupam Madhukar, Kenneth T. Norris Professor in Engineering and Professor of Chemical Engineering, Electrical Engineering, Materials Science, and Physics.

"The breakthrough paves the way to the next steps required to move from lab demonstration of single photon physics to chip-scale fabrication of quantum photonic circuits," Zhang said. "This has potential applications in quantum (secure) communication, imaging, sensing and quantum simulations and computation."

Madhukar said that it is essential that quantum dots be ordered in a precise way so that photons released from any two or more dots can be manipulated to connect with each other on the chip. This will form the basis of building unit for quantum optical circuits.

"If the source where the photons come from is randomly located, this can't be made to happen." Madhukar said.

"The current technology that is allowing us to communicate online, for instance using a technological platform such as Zoom, is based on the silicon integrated electronic chip. If the transistors on that chip are not placed in exact designed locations, there would be no integrated electrical circuit," Madhukar said. "It is the same requirement for photon sources such as quantum dots to create quantum optical circuits."

The research is supported by the Air Force Office of Scientific Research (AFOSR) and the U.S. Army Research Office (ARO).

"This advance is an important example of how solving fundamental materials science challenges, like how to create quantum dots with precise position and composition, can have big downstream implications for technologies like quantum computing," said Evan Runnerstrom, program manager, Army Research Office, an element of the U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "This shows how ARO's targeted investments in basic research support the Army's enduring modernization efforts in areas like networking."

To create the precise layout of quantum dots for the circuits, the team used a method called SESRE (substrate-encoded size-reducing epitaxy) developed in the Madhukar group in the early 1990s. In the current work, the team fabricated regular arrays of nanometer-sized mesas with a defined edge orientation, shape (sidewalls) and depth on a flat semiconductor substrate, composed of gallium arsenide (GaAs). Quantum dots are then created on top of the mesas by adding appropriate atoms using the following technique.

First, incoming gallium (Ga) atoms gather on the top of the nanoscale mesas attracted by surface energy forces, where they deposit GaAs. Then, the incoming flux is switched to indium (In) atoms, to in turn deposit indium arsenide (InAs) followed back by Ga atoms to form GaAs and hence create the desired individual quantum dots that end up releasing single photons. To be useful for creating optical circuits, the space between the pyramid-shaped nano-mesas needs to be filled by material that flattens the surface. The final chip where opaque GaAs is depicted as a translucent overlayer under which the quantum dots are located.

"This work also sets a new world-record of ordered and scalable quantum dots in terms of the simultaneous purity of single-photon emission greater than 99.5%, and in terms of the uniformity of the wavelength of the emitted photons, which can be as narrow as 1.8nm, which is a factor of 20 to 40 better than typical quantum dots," Zhang said.

Zhang said that with this uniformity, it becomes feasible to apply established methods such as local heating or electric fields to fine-tune the photon wavelengths of the quantum dots to exactly match each other, which is necessary for creating the required interconnections between different quantum dots for circuits.

This means that for the first time researchers can create scalable quantum photonic chips using well-established semiconductor processing techniques. In addition, the team's efforts are now focused on establishing how identical the emitted photons are from the same and/or from different quantum dots. The degree of indistinguishability is central to quantum effects of interference and entanglement, that underpin quantum information processing -communication, sensing, imaging, or computing.

Zhang concluded: "We now have an approach and a material platform to provide scalable and ordered sources generating potentially indistinguishable single-photons for quantum information applications. The approach is general and can be used for other suitable material combinations to create quantum dots emitting over a wide range of wavelengths preferred for different applications, for example fiber-based optical communication or the mid-infrared regime, suited for environmental monitoring and medical diagnostics," Zhang said.

Gernot S. Pomrenke, AFOSR Program Officer, Optoelectronics and Photonics said that reliable arrays of on-demand single photon sources on-chip were a major step forward.

"This impressive growth and material science work stretches over three decades of dedicated effort before research activities in quantum information were in the mainstream," Pomrenke said. "Initial AFOSR funding and resources from other DoD agencies have been critical in realizing the challenging work and vision by Madhukar, his students, and collaborators. There is a great likelihood that the work will revolutionize the capabilities of data centers, medical diagnostics, defense and related technologies."

INFORMATION:

The paper's co-authors include Qi Huang and Lucas Jordao from USC's Mork Family Department of Chemical Engineering and Materials Science, Swarnabha Chattaraj from the Ming Hsieh Department of Electrical and Computer Engineering and Siyuan Lu from the IBM Thomas J. Watson Research Center.



ELSE PRESS RELEASES FROM THIS DATE:

Today's stem cell special: Small intestine on a plate!

Todays stem cell special: Small intestine on a plate!
2021-02-05
Enterocytes, which line the epithelium of the small intestine, are the sites of absorption and metabolism of most orally consumed medications. For this reason, studies on the absorption of novel oral drugs rely on in vitro or animal models to accurately recreate the environment of the small intestine. Currently, scientists widely use the human colon cancer cell line Caco-2 as a model of the intestinal epithelium. However, this has its drawbacks: Caco-2 cells have been derived from the colon; therefore, they more closely resemble the colon than the small intestine. For example, these cells do not express cytochrome P450 3A4 (CYP3A4), a protein critical for drug metabolism that is abundantly expressed in the small intestine. Moreover, Caco-2 ...

Grape consumption may protect against UV damage to skin

2021-02-05
Fresno, CA - A recent human study published in the Journal of the American Academy of Dermatology found that consuming grapes protected against ultraviolet (UV) skin damage.1 Study subjects showed increased resistance to sunburn and a reduction in markers of UV damage at the cellular level. 2 Natural components found in grapes known as polyphenols are thought to be responsible for these beneficial effects. The study, conducted at the University of Alabama, Birmingham and led by principal investigator Craig Elmets, M.D., investigated the impact of consuming whole grape powder - equivalent to 2.25 cups of grapes ...

Pandemic increases substance abuse, mental health issues for those struggling with obesity

Pandemic increases substance abuse, mental health issues for those struggling with obesity
2021-02-05
DALLAS - Feb. 5, 2021 - The COVID-19 pandemic is having a detrimental impact on substance use, mental health, and weight-related health behaviors among people with obesity, according to a new study by researchers at UT Southwestern and the END ...

Civil engineers find link between hospitals and schools key to community resilience

2021-02-05
Health care and education systems are two main pillars of a community's stability. How well and how quickly a community recovers following a natural disaster depends on the resilience of these essential social services. New research from the Colorado State University Department of Civil and Environmental Engineering, published in Nature Scientific Reports, has found hospitals and schools are interdependent, suggesting their collective recovery must be considered in order to restore a community in the wake of disaster. Because hospitals and schools are so integral to a community's well-being, Associate Professor Hussam Mahmoud and Ph.D. graduate student Emad Hassan wanted to determine the correlation between them to understand their overall influence on community ...

New way to power up nanomaterials for electronic applications

New way to power up nanomaterials for electronic applications
2021-02-05
UCLA materials scientists and colleagues have discovered that perovskites, a class of promising materials that could be used for low-cost, high-performance solar cells and LEDs, have a previously unutilized molecular component that can further tune the electronic property of perovskites. Named after Russian mineralogist Lev Perovski, perovskite materials have a crystal-lattice structure of inorganic molecules like that of ceramics, along with organic molecules that are interlaced throughout. Up to now, these organic molecules appeared to only serve a structural function and could not directly contribute to perovskites' electronic performance. Led by UCLA, a new study shows that when the organic molecules ...

At the core of the Integrator complex

2021-02-05
Gene expression is a highly regulated process, which involves several steps. These include transcription of DNA instructions into RNA, removal of non-coding segments from the RNA message, and its subsequent translation into proteins. All these steps involve specific molecular machineries responsible for conducting each process with high accuracy. The Galej group, based at EMBL Grenoble, studies the structure and function of the RNA-protein complexes that are involved in the regulation of gene expression. During transcription, genetic information contained in the DNA is used to create a precursor messenger RNA (pre-mRNA) thanks to the action of an enzyme, RNA Polymerase II. To maintain only the necessary coding segments ...

Drop the stress

Drop the stress
2021-02-05
All life on earth evolved multiple layers and networks of ensuring survival upon catastrophic events. Even cells have their emergency plan: the heat shock response. Triggered by multiple stress stimuli such as heat, toxins, or radiation, this cellular safety program tries to prevent permanent damage to the organism. The response resembles an overall adopted "lockdown" strategy witnessed during the global corona virus pandemic. During a lockdown, only essential activities are permitted and resources were diverted towards measures ensuring minimizing the impact of a pandemic. Under normal conditions, RNA polymerase II rushes down the DNA. At the correct places, the DNA is transcribed into mRNA, which is then translated into proteins. In a crisis, ...

Study highlights risk of new SARS-CoV-2 mutations emerging during chronic infection

2021-02-05
SARS-CoV-2 mutations similar to those in the B1.1.7 UK variant could arise in cases of chronic infection, where treatment over an extended period can provide the virus multiple opportunities to evolve, say scientists. Writing in Nature, a team led by Cambridge researchers report how they were able to observe SARS-CoV-2 mutating in the case of an immunocompromised patient treated with convalescent plasma. In particular, they saw the emergence of a key mutation also seen in the new variant that led to the UK being forced once again into strict lockdown, though there is no suggestion that the variant originated from this patient. Using a synthetic version of the virus Spike protein created in the ...

Pangolin coronavirus could jump to humans

2021-02-05
Scientists at the Francis Crick Institute have found important structural similarities between SARS-CoV-2 and a pangolin coronavirus, suggesting that a pangolin coronavirus could infect humans. While SARS-CoV-2 is thought to have evolved from a bat coronavirus, its exact evolutionary path is still a mystery. Uncovering its history is challenging as there are likely many undiscovered bat coronaviruses and, due to differences between bat coronaviruses and SARS-CoV-2, it is thought that the virus may have passed to humans via at least one other species. In their study, published in Nature Communications, the scientists compared the structures of the spike proteins found on ...

Not all banking crises involve panics

2021-02-05
A banking crisis is often seen as a self-fulfilling prophecy: The expectation of bank failure makes it happen. Picture people lining up to withdraw their money during the Great Depression or customers making a run on Britain's Northern Rock bank in 2007. But a new paper co-authored by an MIT professor suggests we have been missing the bigger picture about banking crises. Yes, there are sometimes panics about banks that create self-reinforcing problems. But many banking crises are quieter: Even without customers panicking, banks can suffer losses serious enough to create subsequent economy-wide downturns. "Panics are not needed for banking crises to have severe economic consequences," says Emil Verner, the MIT professor who helped lead the study. "But ...

LAST 30 PRESS RELEASES:

The next evolution of AI begins with ours

Using sunlight to recycle black plastics

ODS FeCrAl alloys endure liquid metal flow at 600 °C resembling a fusion blanket environment

A genetic key to understanding mitochondrial DNA depletion syndrome

The future of edge AI: Dye-sensitized solar cell-based synaptic device

Bats’ amazing plan B for when they can’t hear

Common thyroid medicine linked to bone loss

Vaping causes immediate effects on vascular function

A new clock to structure sleep

Study reveals new way to unlock blood-brain barrier, potentially opening doors to treat brain and nerve diseases

Viking colonizers of Iceland and nearby Faroe Islands had very different origins, study finds

One in 20 people in Canada skip doses, don’t fill prescriptions because of cost

Wildlife monitoring technologies used to intimidate and spy on women, study finds

Around 450,000 children disadvantaged by lack of school support for color blindness

Reality check: making indoor smartphone-based augmented reality work

Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain

Black men — including transit workers — are targets for aggression on public transportation, study shows

Troubling spike in severe pregnancy-related complications for all ages in Illinois

Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas

Need a landing pad for helicopter parenting? Frame tasks as learning

New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability

#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all

Earliest fish-trapping facility in Central America discovered in Maya lowlands

São Paulo to host School on Disordered Systems

New insights into sleep uncover key mechanisms related to cognitive function

USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery

Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance

3D-printing advance mitigates three defects simultaneously for failure-free metal parts 

Ancient hot water on Mars points to habitable past: Curtin study

In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon

[Press-News.org] Breakthrough in quantum photonics promises a new era in optical circuits
Method to enable quantum optical circuits that use photons--heralds a new future for secure communication and quantum computing