(Press-News.org) New research from West Virginia University biologists shows that trees around the world are consuming more carbon dioxide than previously reported, making forests even more important in regulating the Earth's atmosphere and forever shift how we think about climate change.
In a study published in the Proceedings of the National Academy of Sciences, Professor Richard Thomas and alumnus Justin Mathias (BS Biology, '13 and Ph.D. Biology, '20) synthesized published tree ring studies. They found that increases in carbon dioxide in the atmosphere over the past century have caused an uptick in trees' water-use efficiency, the ratio of carbon dioxide taken up by photosynthesis to the water lost by transpiration - the act of trees "breathing out" water vapor.
"This study really highlights the role of forests and their ecosystems in climate change," said Thomas, interim associate provost for graduate academic affairs. "We think of forests as providing ecosystem services. Those services can be a lot of different things - recreation, timber, industry. We demonstrate how forests perform another important service: acting as sinks for carbon dioxide. Our research shows that forests consume large amounts of carbon dioxide globally. Without that, more carbon dioxide would go into the air and build up in the atmosphere even more than it already is, which could exacerbate climate change. Our work shows yet another important reason to preserve and maintain our forests and keep them healthy."
Previously, scientists have thought that trees were using water more efficiently over the past century through reduced stomatal conductance - meaning trees were retaining more moisture when the pores on their leaves began closing slightly under rising levels of carbon dioxide.
However, following an analysis using carbon and oxygen isotopes in tree rings from 1901 to 2015 from 36 tree species at 84 sites around the world, the researchers found that in 83% of cases, the main driver of trees' increased water efficiency was increased photosynthesis - they processed more carbon dioxide. Meanwhile, the stomatal conductance only drove increased efficiency 17% of the time. This reflects a major change in how trees' water efficiency has been explained in contrast to previous research.
"We've shown that over the past century, photosynthesis is actually the overwhelming driver to increases in tree water use efficiency, which is a surprising result because it contradicts many earlier studies," Mathias said. "On a global scale, this will have large implications potentially for the carbon cycle if more carbon is being transferred from the atmosphere into trees."
Since 1901, the intrinsic water use efficiency of trees worldwide has risen by approximately 40% in conjunction with an increase of approximately 34% in atmospheric carbon dioxide. Both of these characteristics increased approximately four times faster since the 1960s compared to the previous years.
While these results show the rise in carbon dioxide is the main factor in making trees use water more efficiently, the results also vary depending on temperature, precipitation and dryness of the atmosphere. These data can help refine models used to predict the effects of climate change on global carbon and water cycles.
"Having an accurate representation of these processes is critical in making sound predictions about what may happen in the future," Mathias said. "This helps us get a little closer to making those predictions less uncertain."
The study is a product of the researchers' seven-year research collaboration during Mathias' time as a doctoral student. After graduating from WVU, Mathias joined University of California, Santa Barbara as a postdoctoral researcher.
"Since moving to California, my work has taken a turn from being in the field, collecting measurements, analyzing data and writing manuscripts," Mathias said. "My new position is more focused on ecological theory and ecosystem modeling. Instead of measuring plants, I form hypotheses and seek out answers to questions using computer models and math."
In the future, Mathias aspires to become a professor at a research university to continue these research pursuits.
"I would love to run my own lab at a university, mentor graduate students and pursue research questions to continue building on the work we've already accomplished. There's been a lot of progress in our field. There are also an infinite number of questions that are relevant moving forward," Mathias said. "I owe everything to my time and training from the people at WVU. My long-term goal is to be in a position where I can continue moving the field forward while giving back through teaching and mentoring students."
INFORMATION:
A new study suggests that differences in the expression of gene transcripts - readouts copied from DNA that help maintain and build our cells - may hold the key to understanding how mental disorders with shared genetic risk factors result in different patterns of onset, symptoms, course of illness, and treatment responses. Findings from the study, conducted by researchers at the National Institute of Mental Health (NIMH), part of the National Institutes of Health, appear in the journal Neuropsychopharmacology.
"Major mental disorders, such as schizophrenia, bipolar disorder, and major depressive disorder, share common genetic roots, but each disorder presents differently in each individual," said Francis J. McMahon, M.D., a senior author of the ...
PHILADELPHIA (February 8, 2021) - An abundance of data underscore the importance of breastfeeding and human milk for the optimal health of infants, children, mothers, and society. But while breastfeeding initiation rates have increased to more than 80% in the U.S., a disparity exists for African American mothers and infants. In this group, breastfeeding is initiated only about 69% of the time.
A new study to help identify the best strategies and practices to improve breastfeeding in the African American community leverages the opinions, knowledge, and experiences of subject matter exerts (SMEs) with national and international exposure to policies and practices influencing African ...
Wearable devices can identify COVID-19 cases earlier than traditional diagnostic methods and can help track and improve management of the disease, Mount Sinai researchers report in one of the first studies on the topic. The findings were published in the END ...
As human interaction with robots and artificial intelligence increases exponentially in areas like healthcare, manufacturing, transportation, space exploration, defense technologies, information about how humans and autonomous systems work within teams remains scarce.
Recent findings from human systems engineering research demonstrate that human-autonomy teaming comes with interaction limitations that can leave these teams less efficient than all-human teams.
Existing knowledge about teamwork primarily is based on human-to-human or human-to-automation interaction, which positions humans as supervisors of automated partners.
But as autonomy has increasingly ...
How did rocks rust on Earth and turn red? A Rutgers-led study has shed new light on the important phenomenon and will help address questions about the Late Triassic climate more than 200 million years ago, when greenhouse gas levels were high enough to be a model for what our planet may be like in the future.
"All of the red color we see in New Jersey rocks and in the American Southwest is due to the natural mineral hematite," said lead author Christopher J. Lepre, an assistant teaching professor in the Department of Earth and Planetary Sciences in the School of Arts and Sciences at Rutgers University-New Brunswick. ...
How come we don't hear everything twice: After all, our ears sit on opposite sides of our head and most sounds do not reach both our ears at exactly the same time. "While this helps us determine which direction sounds are coming from, it also means that our brain has to combine the information from both ears. Otherwise, we would hear an echo," explains Basil Preisig of the Department of Psychology at the University of Zurich.
In addition, input from the right ear reaches the left brain hemisphere first, while input from the left ear reaches the right brain hemisphere first. The two hemispheres ...
Louisiana State University College of the Coast & Environment Boyd Professor R. Eugene Turner reconstructed a 100-year record chronicling water quality trends in the lower Mississippi River by compiling water quality data collected from 1901 to 2019 by federal and state agencies as well as the New Orleans Sewerage and Water Board. The Mississippi River is the largest river in North America with about 30 million people living within its watershed. Turner focused on data that tracked the water's acidity through pH levels and concentrations of bacteria, oxygen, lead and sulphate in this study published in Ambio, a journal of the Royal Swedish Academy of Sciences.
Rivers ...
Alexandria, Va., USA -- High-volume aspirators are recommended in dental clinics during the COVID-19 pandemic, but the study "SARS-CoV-2 Seropositivity Among Dental Staff and the Role of Aspirating Systems" published in the JDR Clinical & Translational Research (JDR CTR), shows that the type of aspirating system significantly affects the incidence of SARS-CoV-2 infection among dental specialists.
In this retrospective cohort study of 157 healthcare workers in Ekaterinburg, Russia, data on the seroprevalence of COVID-19 from dental clinics using three different types of aspirating systems were compared. Clinic A and B used a V6000 aspirating system with a vacuum controller and high-efficiency ...
Systems designed to detect deepfakes --videos that manipulate real-life footage via artificial intelligence--can be deceived, computer scientists showed for the first time at the WACV 2021 conference which took place online Jan. 5 to 9, 2021.
Researchers showed detectors can be defeated by inserting inputs called adversarial examples into every video frame. The adversarial examples are slightly manipulated inputs which cause artificial intelligence systems such as machine learning models to make a mistake. In addition, the team showed that the attack still works after videos are ...
The Atala butterfly (Eumaeus atala) and its five closest relatives in the genus Eumaeus like to display their toxicity. This sextet's toxicity comes from what they eat as caterpillars: plants called cycads that have been around since before dinosaurs roamed the Earth and contain a potent liver toxin called cycasin.
Because they are filled with poison, Eumaeus are big, gaudily iridescent and flap about like they have no place to go. Even their caterpillars are conspicuous, congregating in groups to munch cycad plants all while sporting flashy red and gold ...