Chemists developed a simplified method for pharmaceutical compounds synthesizing
A team of chemists from Immanuel Kant Baltic Federal University and Saint Petersburg State University developed a simple and efficient method to synthesize tetrahydroisoquinolines--important organic molecules for drug discovery
2021-02-09
(Press-News.org) The structure of organic substances tetrahydroisoquinolines (THIQ) includes a benzene ring fused with a nitrogen-containing cycle. These compounds are in high demand in the pharmaceutical industry. They are used in the synthesis of myorelaxants, antidepressants, and drugs against hypertension, cough, and insomnia. Although different variations of THIQ structures can be found in natural sources (for example, as parts of phytotoxins), modern-day pharmaceutical manufacturers are also interested in their rare types, such as spirocyclic THIQs. In their molecules, two adjacent cycles share one common atom, thus creating an unusual and very stable 3D structure. This feature is extremely important for drug design: the more stable a molecule's spatial structure is, the more accurately it can be aimed at a protein target in a body.
The majority of existing approaches to the synthesis of spirocyclic THIQs are quite time-consuming. They involve complex cycle-forming reactions arranged in a linear sequence. A team of chemists from Immanuel Kant Baltic Federal University and Saint Petersburg State University found a way to reduce this process to just three steps and to combine the first two into one chemical operation.
The first step is the so-called Castagnoli-Cushman reaction. Earlier this year the BFU-SPbSU team had reported a new version of this reaction in which the product (various carboxylic acids) is formed from three components: homophthalic anhydride (an organic substance with a benzene ring fused to an oxygen cycle with two carbonyl groups), cyclic ketones, and ammonium acetate that works as a source of nitrogen. The team tested the new THIQ synthesis method using cyclohexanone as a ketone. After 16 hours of reaction, a carboxylic acid was formed from the reagents. The acid contained three rings, two of which already shared a common atom. The next steps were focused on removing the waste products of the reaction while preserving the spirocyclic compound intact. First of all, the team heated the compound in dimethyl sulfoxide to remove the -COOH carboxylic group. This step did not require any purification of the first reaction products. As a result, the acid turned into THIQ lactam, a substance that only differs from the target reaction product by one extra oxygen atom. A reduction reaction of the lactam with lithium aluminum hydride completed the process.
All stages of the process proceeded in high yield: 79% of the initial homophthalic anhydride turned into THIQ lactam, and 78% of lactam produced spirocyclic THIQ. Having confirmed the efficiency of the new method, the team carried out the same series of reactions using other cyclic ketones. Of the 14 tested options, the majority also showed a high THIQ yield. Therefore, the new method can be used to obtain substances with various structures.
"We have developed an effective approach to the synthesis of spirocyclic tetrahydroisoquinolines that is also much easier compared to existing procedures. It can increase our opportunities for the development of THIQ-based compounds for the pharmaceutical industry. Moreover, the same approach can be applied to other compounds that might serve as prototypes for new drugs", said Mikhail Krasavin, D.Sc. in Chemistry, Research Professor at the Institute of Living Systems (BFU), and the Head of the Department of the Chemistry of Natural Products (SPbSU).
INFORMATION:
ELSE PRESS RELEASES FROM THIS DATE:
2021-02-09
The development of the so-called small molecules is a promising field of the pharmaceutical industry. Small molecules are organic compounds with a small molecular mass. They are often based on heterocycles--carbon rings that also include atoms of nitrogen and other elements. The synthesis of small molecules is much cheaper than the development of drugs based on antibodies or other biological molecules; however, their properties are still understudied. Even the slightest modifications can change the characteristics of a small molecule and open a whole new range of its practical applications. Therefore, many research teams working in the field of chemical pharmacology improve synthesis methods to create libraries of ...
2021-02-09
The COVID-19 pandemic that shuttered cities around the world did not just affect the way we work, study and socialize. It also affected our mobility. With millions of workers no longer commuting, vehicle traffic across Canada has plummeted. This has had a significant impact on the quality of air in major Canadian cities, according to a new study by Concordia researchers.
A paper published in the journal Science of the Total Environment looked at downtown air quality monitoring station data from Vancouver, Edmonton, Saskatoon, Winnipeg, Toronto, Montreal, Halifax ...
2021-02-09
To achieve target delivery of drugs to cells and organs, scientists have to be able to transport the molecules of pharmaceutical substances to targets using a controllable carrier. The role of such a carrier can be played by special particles, such as lipid droplets or magnetic nanoparticles. Among the latter, the most popular are the ones based on iron oxides. Their sizes range from 1 to 100 nm, which is dozens of times smaller than animal cells, and they can be moved within a body using an external magnetic field.
However, in practice, it is quite difficult to control nanoparticles with magnets, as the magnetic field quickly becomes weaker when the distance from the magnet increases. This problem ...
2021-02-09
WASHINGTON, February 9, 2021 -- As COVID-19 spreads via respiratory droplets, researchers have become increasingly interested in the drying of droplets on impermeable and porous surfaces. Surfaces that accelerate evaporation can decelerate the spread of the COVID-19 virus.
In Physics of Fluids, by AIP Publishing, researchers from IIT Bombay show a droplet remains liquid for a much shorter time on a porous surface, making it less favorable to survival of the virus.
The researchers found the coronavirus can survive for four days on glass, seven days on plastic, and seven days on stainless steel. But on paper and cloth, the virus survived for only three hours and two days, respectively.
"Based on our study, we recommend that furniture in hospitals and offices, ...
2021-02-09
What The Study Did: Researchers examined how common SARS- CoV-2 infection was among migrant workers in Singapore.
Authors: Vernon J. Lee, M.B.B.S., Ph.D., of the Ministry of Health in Singapore, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jama.2020.24071)
Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support.
INFORMATION:
Media advisory: The full article is linked to this news release.
Embed ...
2021-02-09
WASHINGTON, February 9, 2021 -- The detailed physical processes and pathways involved in the transmission of COVID-19 are still not well understood. Researchers decided to use advanced computational fluid dynamics tools on supercomputers to deepen understanding of transmission and provide a quantitative assessment of how different environmental factors influence transmission pathways and airborne infection risk.
A restaurant outbreak in China was widely reported as strong evidence of airflow-induced transmission of COVID-19. But it lacked a detailed investigation about exactly how transmission occurred.
Why did some people get infected while others within the same area did not? ...
2021-02-09
What The Viewpoint Says: The missteps and miscommunications that have stymied a more effective U.S. and global response to the COVID-19 pandemic bring into sharp focus the deficiencies in governance systems of the U.S. public health and scientific institutions.
Authors: K. M. Venkat Narayan, M.D., M.Sc., of the Rollins School of Public Health and School of Medicine at Emory University in Atlanta, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jama.2020.23479)
Editor's Note: The article includes conflict of interest disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest ...
2021-02-09
WASHINGTON, February 9, 2021 -- School closures, the loss of public spaces, and having to work remotely due to the coronavirus pandemic have caused major disruptions in people's social lives all over the world.
Researchers from City University of Hong Kong, the Chinese Academy of Sciences, and Rensselaer Polytechnic Institute suggest a reduction in fatal coronavirus cases can be achieved without the need for so much social disruption. They discuss the impacts of the closures of various types of facilities in the journal Chaos, from AIP Publishing.
After running thousands of simulations of the pandemic response in New York City with variations in social distancing behavior at home, in schools, at public facilities, and in the workplace ...
2021-02-09
What The Study Did: To mitigate subsequent waves of COVID-19, allocating testing resources to locations of greatest need is important. Researchers in this study examined the alignment of testing to epidemic intensity in Massachusetts.
Authors: Scott Dryden-Peterson, M.D., M.Sc., of Brigham and Women's Hospital in Boston, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2020.37067)
Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, ...
2021-02-09
WASHINGTON, February 9, 2021 -- Advances in the fields of biomaterials and nanotechnology could lead to big breakthroughs in the fight against dangerous viruses like the novel coronavirus that causes COVID-19.
In APL Bioengineering, by AIP Publishing, researchers from the Indian Institute of Science describe two possibilities being explored by scientists in the field to make vaccines more effective and build surfaces that could fight and kill viruses on their own.
"It is important not just in terms of COVID," said author Kaushik Chatterjee. "We've seen SARS, ...
LAST 30 PRESS RELEASES:
[Press-News.org] Chemists developed a simplified method for pharmaceutical compounds synthesizing
A team of chemists from Immanuel Kant Baltic Federal University and Saint Petersburg State University developed a simple and efficient method to synthesize tetrahydroisoquinolines--important organic molecules for drug discovery