PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Highly efficient metasurface poised to improve communication and biosensing

Nanostructured thin film works over an unprecedented centimeter-scale area

Highly efficient metasurface poised to improve communication and biosensing
2021-02-11
(Press-News.org) WASHINGTON -- Researchers have created a new plasmonic metasurface that achieves record high light efficiency over the entire centimeter-scale metasurface. The advance makes the new nanostructured thin film practical for use in a variety of applications from light-based communication to fluorescence-based biosensing.

"The major obstacles for using plasmonic structures for practical applications is that they are either too inefficient or their nanoscale properties aren't easily scalable to larger sizes," said research team leader Maiken H. Mikkelsen from Duke University. "We designed and optimized a plasmonic metasurface that overcomes both of these limitations."

In Optica, The Optical Society's (OSA) journal for high impact research, Mikkelsen and colleagues describe how they designed nanostructured metasurfaces that boost the intensity and speed at which light is absorbed and emitted as fluorescence through surface plasmon resonance. Surface plasmon resonance occurs when certain wavelengths of light interact with free electrons at the interface of a metal and an insulator, or dielectric, surface.

"Our work shows that plasmonic structures can be very useful for enhancing both absorption and emission of light, not just from tiny nanocavities but over large wafer-scale areas," said Mikkelsen. "This could be useful for ultrafast optoelectronics devices used in communications applications and could also increase the sensitivity of fluorescence-based biosensors."

Faster light emission

To make the new metasurface, the researchers created a nanostructure that sandwiched fluorescent dye molecules between a gold film and 100-nanometer-wide silver cubes. When light hits this structure, it excites localized surface plasmons, which are collective oscillations of free electrons in the metal. This enhances the electromagnetic field around the dyes, causing them to emit light very quickly after being excited by the incoming light.

By putting just 10 nanometers between the film and the nanocubes, the researchers were able to dramatically increase the spontaneous emission rate of the entire metasurface wafer. To increase efficiency even more, they used multiple layers of dye.

"With our new design, there's no need to cherry-pick the perfect nanostructure because the whole metasurface is efficient," said Mikkelsen. "It can also be used to absorb light from large incidence angles and re-emit in a narrower cone at high speeds."

Unprecedented efficiency

Tests of the new metasurface showed that it exhibited record high overall efficiency of about 30% for converting the incoming excitation light into emitted fluorescence. The nanoscale structures also maintained an ultrafast light modulation rate of more than 14 GHz across the full centimeter-scale metasurface, which has never been demonstrated before. For communication applications, faster light modulation allows more data to be encoded into light signals at a higher rate.

The new metasurface could be useful for producing a stronger fluorescence signal that would enable new biosensing and imaging methods. It might also offer a route to faster LEDs that could provide a fast source of incoherent light and new types of detectors for optical wireless communication.

INFORMATION:

Paper: A. J. Traverso, J. Huang, T. Peyronel, G. Yang, T. G. Tiecke, M. H. Mikkelsen, "Low-loss, centimeter-scale plasmonic metasurface for ultrafast optoelectronics," Optica, 8, 2, 202-207 (2021).
DOI: https://doi.org/10.1364/OPTICA.400731.

About Optica Optica is an open-access, journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 60 associate editors from around the world and is overseen by Editor-in-Chief Prem Kumar, Northwestern University, USA. For more information, visit Optica.

About The Optical Society Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Aaron Cohen
(301) 633-6773
aaroncohenpr@gmail.com

mediarelations@osa.org


[Attachments] See images for this press release:
Highly efficient metasurface poised to improve communication and biosensing

ELSE PRESS RELEASES FROM THIS DATE:

Capturing free-space optical light for high-speed wifi

Capturing free-space optical light for high-speed wifi
2021-02-11
DURHAM, N.C. - Visible and infrared light can carry more data than radio waves, but has always been confined to a hard-wired, fiber-optic cable. Working with Facebook's Connectivity Lab, a Duke research team has now made a major advance toward the dream of ditching the fiber in fiber optics. While working to create a free-space optical communication system for high-speed wireless internet, the researchers also show that speed and efficiency properties previously demonstrated on tiny, single-unit plasmonic antennas can also be achieved on larger, centimeter-scale devices. The research appears online Feb. 11 in the journal Optica. In 2016, researchers from Internet.org's Connectivity Lab--a subsidiary of Facebook--outlined a new type of light detector that could ...

Finnish study shows how the uncertainty in the Bitcoin market responds to cyberattacks

Finnish study shows how the uncertainty in the Bitcoin market responds to cyberattacks
2021-02-11
A total of 1.1 million bitcoin were stolen in the 2013-2017 period. Given the current price for Bitcoin exceeding $40,000, the corresponding monetary equivalent of losses is more than $44 billion highlighting the societal impact of this criminal activity. The question arises how does the uncertainty in the Bitcoin market - measured by its volatility - respond to such cyberattacks. A recently published research article from Dr. Klaus Grobys (University of Vaasa, Finland) in the well-known journal Quantitative Finance addresses this question. In his study, he examined 29 hacking incidents that occurred in the Bitcoin market in the 2013-2017 period. A surprising result of this study is that Bitcoin volatility does not respond to hackings with a subsequent ...

New study suggests better approach in search for COVID-19 drugs

2021-02-11
Research from the University of Kent, Goethe-University in Frankfurt am Main, and the Philipps-University in Marburg has provided crucial insights into the biological composition of SARS-CoV-2, the cause of COVID-19, revealing vital clues for the discovery of antiviral drugs. Researchers compared SARS-CoV-2 and the closely related virus SARS-CoV, the cause of the 2002/03 SARS outbreak. Despite being 80% biologically identical, the viruses differ in crucial properties. SARS-CoV-2 is more contagious and less deadly, with a fatality rate of 2% compared to SARS-CoV's 10%. Moreover, SARS-CoV-2 can be spread by asymptomatic individuals, whereas SARS-CoV was only transmitted by those who were already ill. Most functions in cells are carried ...

Proper fit of face masks is more important than material, study suggests

2021-02-11
A team of researchers studying the effectiveness of different types of face masks has found that in order to provide the best protection against COVID-19, the fit of a mask is as important, or more important, than the material it is made of. The researchers, from the University of Cambridge, carried out a series of different fit tests, and found that when a high-performance mask - such as an N95, KN95 or FFP2 mask - is not properly fitted, it performs no better than a cloth mask. Minor differences in facial features, such as the amount of fat under the skin, make significant differences in how well a mask fits. The results, published in the journal PLoS ONE, also suggest that the fit-check routine used in many healthcare settings has high failure rates, as minor leaks ...

Vibrating 2D materials

Vibrating 2D materials
2021-02-11
Current electronic components in computers, mobile phones and many other devices are based on microstructured silicon carriers. However, this technology has almost reached its physical limits and the smallest possible structure sizes. Two-dimensional (2D) materials are therefore being intensively researched. One can imagine these materials as extremely thin films consisting of only one layer of atoms. The best known is graphene, an atomically thin layer of graphite. For its discovery, Andre Geim and Konstantin Novoselov received the Nobel Prize in Physics in 2010. While ...

Wafer-scale production of graphene-based photonic devices

Wafer-scale production of graphene-based photonic devices
2021-02-11
Our world needs reliable telecommunications more than ever before. However, classic devices have limitations in terms of size and cost and, especially, power consumption - which is directly related to greenhouse emissions. Graphene could change this and transform the future of broadband. Now, Graphene Flagship researchers have devised a wafer-scale fabrication technology that, thanks to predetermined graphene single-crystal templates, allows for integration into silicon wafers, enabling automation and paving the way to large scale production. This work, published in the prestigious journal ACS Nano, is a great example of a collaboration fostered by the ...

- How we sleep and experience psychological symptoms during pandemic

2021-02-11
During the first confinement (18 March to 10 May 2020), people who reported worse sleep quality during a night also reported an increase in negative mood, psychotic-type like experiences and somatic complaints on the next day. Furthermore, daily reports of deaths caused by Covid-19 predicted psychological symptoms on the same day and sleep quality the following night. This is the result of research carried out in three countries (Belgium, Hungary, Spain) under direction of Peter Simor with researchers at the Université libre de Bruxelles (ULB), Rebeca Sifuentes-Ortega, Ariadna Albajara Saenz, Oumaïma Benkirane, Anke Van Roy and Philippe Peigneux from the CRCN (Center for Research in Cognition and Neurosciences) and the UNI (ULB Neurosciences Institute) ...

Smartphone app to change your personality

2021-02-11
Personality traits such as conscientiousness or sociability are patterns of experience and behavior that can change throughout our lives. Individual changes usually take place slowly as people gradually adapt to the demands of society and their environment. However, it is unclear whether certain personality traits can also be psychologically influenced in a short-term and targeted manner. Researchers from the universities of Zurich, St. Gallen, Brandeis, Illinois, and ETH Zurich have now investigated this question using a digital intervention. In their study, around 1,500 participants were provided with a specially developed smartphone app for three months and the researchers then assessed whether and ...

RUDN University mathematician suggested a scheme for solving telegraph equations

RUDN University mathematician suggested a scheme for solving telegraph equations
2021-02-11
A mathematician from RUDN University suggested a stable difference scheme for solving inverse problems for elliptic-telegraph and differential equations that are used to describe biological, physical, and sociological processes. The results of the study were published in the Numerical Methods for Partial Differential Equations journal. Elliptic equations are a class of differential equations in partial derivatives that are used, among other things, to model time-independent processes. Telegraph equations are presented in a nonstationary form. They were initially obtained for a telegraph communication line, but today they are also used to model the movement of insects, the flow of blood ...

Ionic liquid uniformly delivers chemotherapy to tumors while destroying cancerous tissue

2021-02-11
PHOENIX -- A Mayo Clinic team, led by Rahmi Oklu, M.D., Ph.D., a vascular and interventional radiologist at Mayo Clinic, in collaboration with Samir Mitragotri, Ph.D., of Harvard University, report the development of a new ionic liquid formulation that killed cancer cells and allowed uniform distribution of a chemotherapy drug into liver tumors and other solid tumors in the lab. This discovery could solve a problem that has long plagued drug delivery to tumors and provide new hope to patients with liver cancer awaiting a liver transplant. The preclinical study results are published in Science Translational Medicine. Dr. Oklu, study author and director of Mayo Clinic's ...

LAST 30 PRESS RELEASES:

Label distribution similarity-based noise correction for crowdsourcing

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall

Emerging alternatives to reduce animal testing show promise

Presenting Evo – a model for decoding and designing genetic sequences

Global plastic waste set to double by 2050, but new study offers blueprint for significant reductions

Industrial snow: Factories trigger local snowfall by freezing clouds

Backyard birds learn from their new neighbors when moving house

New study in Science finds that just four global policies could eliminate more than 90% of plastic waste and 30% of linked carbon emissions by 2050

Breakthrough in capturing 'hot' CO2 from industrial exhaust

New discovery enables gene therapy for muscular dystrophies, other disorders

[Press-News.org] Highly efficient metasurface poised to improve communication and biosensing
Nanostructured thin film works over an unprecedented centimeter-scale area