PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Researchers have broken the code for cell communication

Researchers have broken the code for cell communication
2021-02-12
(Press-News.org) Knowledge on how cells communicate is an important key to understanding many biological systems and diseases. A research team led by researchers at the University of Gothenburg has now used a unique combination of methods to map the mechanism behind cellular communication. Their findings can potentially improve understanding of the underlying mechanism behind type 2 diabetes.

We know that human communication is important, but communication between the cells in our bodies is just as vital. The processes where cells synchronize and coordinate their behaviour is required for an organism to function and for human organs to be able to perform their functions.

"How do cells go from monologues to dialogues? How do cells transit from acting as individuals to acting as a community? We need to better understand this complex and difficult-to-study behaviour," says Caroline Beck Adiels, senior lecturer at the Department of Physics at the University of Gothenburg.

Have found the mechanism behind cellular communication

She is responsible for the study now published in the scientific journal PNAS, in which the researchers established a method for studying cellular communication. In the study, they successfully mapped the mechanism behind cellular communication in the metabolic process, using small culture chambers that allow the control of the environment around the cells.

The researchers chose to study yeast cells, since they are similar to human cells, and their focus is on glycolytic oscillations - a series of chemical reactions during metabolism where the concentration of substances can pulse or oscillate. The study showed how cells that initially oscillated independent of each other shifted to being more synchronized, creating partially synchronized populations of cells.

"One of the unique things with this study is that we have been able to study individual cells instead of simply entire cell populations. This has allowed us to really be able to see how the cells transition from their individual behaviour to coordinating with their neighbours. We have been able to map their behaviour both temporally and spatially, that is to say, when something occurs and in which cell," says Beck Adiels.

Opens up opportunities for understanding type 2 diabetes

According to Beck Adiels, this knowledge can be applied in many other biological systems and more complex cells where coordinated cell behaviour plays an important role. This type of behaviour is also found in cells such as heart muscle cells and in pancreatic cells, which can be an important piece of the puzzle in diabetes research.

"The study can contribute to understanding how pancreatic cells are regulated and how they secrete insulin, which can help us understand the underlying mechanism behind type 2 diabetes. Eventually, this could contribute to developing new medicines for treating the disease."

The study is a collaboration between eight researchers at Swedish and international universities, and Caroline Beck Adiels emphasizes that this interdisciplinary collaboration has been fundamental in studying the complex behaviour of cells from multiple perspectives.

"I am very proud of this work, which had not been possible to complete if we had not collaborated across disciplines," she says.

INFORMATION:

Text: Ulrika Ernström

The study's title: Intercellular communication induces glycolytic synchronization waves between individually oscillating cells

Digital publication: https://www.pnas.org/content/118/6/e2010075118

Scientific journal: PNAS, Proceedings of the National Academy of Sciences of the United States of America

Co-authors: Martin Mojica-Benavides, David D. van Niekerk, Mite Mijalkov, Jacky L. Snoep, Bernhard Mehlig, Giovanni Volpe, Mattias Goksör and Caroline B. Adiels

Facts about the research and methodology The researchers mapped the mechanism behind cellular communication in the metabolic process. Yeast cells were chosen since they have many similarities to human cells and can be used as a model organism. By using small culture chambers (a microfluidic device), yeast cells can be studied under the microscope while controlling the environment around them. The chamber can be designed so the cells are in a single layer, allowing them to be studied individually. Thanks to one of the substances in the metabolic chain being autofluorescent, i.e., it emits a weak glow when the cell is illuminated at a specific wavelength, the researchers can see how the cells communicate and synchronize. The experimental results have been verified with a detailed mathematical model of the glycolytic reactions, which has been applied to each individual cell. Software has also been developed from the ground up to study the brain's various connections. This was used to confirm both experimental and theoretical data, but it also provides the researchers a tool to stage several situations of complex cellular communication.


[Attachments] See images for this press release:
Researchers have broken the code for cell communication

ELSE PRESS RELEASES FROM THIS DATE:

Researchers find parallels in spread of brain cancer in mammals, zebrafish

Researchers find parallels in spread of brain cancer in mammals, zebrafish
2021-02-12
Scientists at the Fralin Biomedical Research Institute at VTC have identified a new zebrafish model that could help advance glioblastoma multiforme research. Glioblastoma is an aggressive form of primary brain tumor - fewer than one in 20 patients survive five years after diagnosis. The research team previously discovered that human-derived brain cancer cells in mice use the brain's blood vessels like highways to spread away from the original mass. In the new study, published in ACS Pharmacology and Translational Science, they show clear cross-over between mammals and fish and describe similar observations in zebrafish. "Our hope is that this new work in zebrafish will help researchers ...

Grasshoppers and roadblocks: Coping with COVID-19 in rural Mexico

Grasshoppers and roadblocks: Coping with COVID-19 in rural Mexico
2021-02-12
COLUMBUS, Ohio - On the outskirts of some small Indigenous communities in the Mexican state of Oaxaca, a few volunteer guards keep watch along roads blocked by makeshift barricades of chains, stones and wood. The invader they are trying to stop is COVID-19. For many of Mexico's Indigenous people, poor and ignored by state and federal governments, the fight against the COVID-19 pandemic is one that rests primarily with themselves, said Jeffrey Cohen, a professor of anthropology at The Ohio State University. That means they must take steps like limiting access to their villages. "Most of these communities only have ...

Metabolic response behind reduced cancer cell growth

2021-02-12
peer review/experimental study/animals/cells Researchers from Uppsala University show in a new study that inhibition of the protein EZH2 can reduce the growth of cancer cells in the blood cancer multiple myeloma. The reduction is caused by changes in the cancer cells' metabolism. These changes can be used as markers to discriminate whether a patient would respond to treatment by EZH2 inhibition. The study has been published in the journal Cell Death & Disease. Multiple myeloma is a type of blood cancer where immune cells grow in an uncontrolled way in the bone marrow. The disease is very difficult to treat and is still considered incurable, and thus it is urgent to identify new therapeutic targets in the cancer cells. The research group behind ...

Green tea compound aids p53, 'guardian of the genome' and tumor suppressor

Green tea compound aids p53, guardian of the genome and tumor suppressor
2021-02-12
TROY, N.Y. -- An antioxidant found in green tea may increase levels of p53, a natural anti-cancer protein, known as the "guardian of the genome" for its ability to repair DNA damage or destroy cancerous cells. Published today in Nature Communications, a study of the direct interaction between p53 and the green tea compound, epigallocatechin gallate (EGCG), points to a new target for cancer drug discovery. "Both p53 and EGCG molecules are extremely interesting. Mutations in p53 are found in over 50% of human cancer, while EGCG is the major anti-oxidant in green tea, a popular beverage worldwide," said END ...

Lemurs show there's no single formula for lasting love

Lemurs show theres no single formula for lasting love
2021-02-12
DURHAM, N.C. -- Humans aren't the only mammals that form long-term bonds with a single, special mate -- some bats, wolves, beavers, foxes and other animals do, too. But new research suggests the brain circuitry that makes love last in some species may not be the same in others. The study, appearing Feb. 12 in the journal Scientific Reports, compares monogamous and promiscuous species within a closely related group of lemurs, distant primate cousins of humans from the island Madagascar. Red-bellied lemurs and mongoose lemurs are among the few species in the lemur family tree in which male-female partners stick together year after year, working together to raise their young and defend their territory. Once bonded, pairs spend much of their waking hours grooming ...

Researchers identify potential revolutionary new drug treatment for fatal childhood cancer

2021-02-12
Every year around 20 Australian children die from the incurable brain tumour, Diffuse Intrinsic Pontine Glioma (DIPG). The average age of diagnosis for DIPG is just seven years. There are no effective treatments, and almost all children die from the disease, usually within one year of diagnosis. A paper published today 12 Feb 2021 in the prestigious journal, Nature Communications, reveals a potential revolutionary drug combination that - in animal studies and in world first 3D models of the tumour - is "spectacularly effective in eradicating the cancer cells," according to lead researcher and paediatric oncologist Associate Professor David Ziegler, from the Children's Cancer Institute and Sydney Children's Hospital. In ...

Study reveals mutations that drive therapy-related myeloid neoplasms in children

Study reveals mutations that drive therapy-related myeloid neoplasms in children
2021-02-12
Children treated for cancer with approaches such as chemotherapy can develop therapy-related myeloid neoplasms (a second type of cancer) with a dismal prognosis. Scientists at St. Jude Children's Research Hospital have characterized the genomic abnormalities of 84 such myeloid neoplasms, with potential implications for early interventions to stop the disease. A paper detailing the work was published today in Nature Communications. The somatic (cancer) and germline (inherited) genomic alterations that drive therapy-related myeloid neoplasms in children have not been comprehensively ...

Promising new approach to stop growth of brain cancer cells

Promising new approach to stop growth of brain cancer cells
2021-02-12
(Friday, February 12, 2021 - Toronto) -- Inhibiting a key enzyme that controls a large network of proteins important in cell division and growth paves the way for a new class of drugs that could stop glioblastoma, a deadly brain cancer, from growing. Researchers at Princess Margaret Cancer Centre, the Hospital for Sick Children (SickKids) and University of Toronto, showed that chemically inhibiting the enzyme PRMT5 can suppress the growth of glioblastoma cells. The inhibition of PRMT5 led to cell senescence, similar to what happens to cells during aging when cells lose the ability to divide and grow. Cellular senescence can also be a powerful tumour suppression mechanism, stopping ...

Research highlights ways to protect astronaut cardiovascular health from space radiation

2021-02-12
Space: the final frontier. What's stopping us from exploring it? Well, lots of things, but one of the major issues is space radiation, and the effects it can have on astronaut health during long voyages. A new review in the open-access journal END ...

New synthetic peptides could attenuate atherosclerosis

2021-02-12
Research over the last 20 years has shown that atherosclerosis is a chronic inflammatory condition of the arterial blood vessel wall. Soluble mediators such as cytokines and chemokines are pivotal players in this disease, promoting vascular inflammation. However, the development of anti-inflammatory therapeutics directed against such mediators that could prevent atherosclerosis has proven difficult, despite promising clinical studies in the recent past. Previous anti-inflammatory therapeutic strategies to prevent atherosclerosis, heart attacks, strokes, rheumatoid arthritis and other inflammatory diseases have mainly been based ...

LAST 30 PRESS RELEASES:

Science briefing: An update on GLP-1 drugs for obesity

Lower doses of immunotherapy for skin cancer give better results

Why didn’t the senior citizen cross the road? Slower crossings may help people with reduced mobility

ASH 2025: Study suggests that a virtual program focusing on diet and exercise can help reduce side effects of lymphoma treatment

A sound defense: Noisy pupae puff away potential predators

Azacitidine–venetoclax combination outperforms standard care in acute myeloid leukemia patients eligible for intensive chemotherapy

Adding epcoritamab to standard second-line therapy improves follicular lymphoma outcomes

New findings support a chemo-free approach for treating Ph+ ALL

Non-covalent btki pirtobrutinib shows promise as frontline therapy for CLL/SLL

University of Cincinnati experts present research at annual hematology event

ASH 2025: Antibody therapy eradicates traces of multiple myeloma in preliminary trial

ASH 2025: AI uncovers how DNA architecture failures trigger blood cancer

ASH 2025: New study shows that patients can safely receive stem cell transplants from mismatched, unrelated donors

Protective regimen allows successful stem cell transplant even without close genetic match between donor and recipient

Continuous and fixed-duration treatments result in similar outcomes for CLL

Measurable residual disease shows strong potential as an early indicator of survival in patients with acute myeloid leukemia

Chemotherapy and radiation are comparable as pre-transplant conditioning for patients with b-acute lymphoblastic leukemia who have no measurable residual disease

Roughly one-third of families with children being treated for leukemia struggle to pay living expenses

Quality improvement project results in increased screening and treatment for iron deficiency in pregnancy

IV iron improves survival, increases hemoglobin in hospitalized patients with iron-deficiency anemia and an acute infection

Black patients with acute myeloid leukemia are younger at diagnosis and experience poorer survival outcomes than White patients

Emergency departments fall short on delivering timely treatment for sickle cell pain

Study shows no clear evidence of harm from hydroxyurea use during pregnancy

Long-term outlook is positive for most after hematopoietic cell transplant for sickle cell disease

Study offers real-world data on commercial implementation of gene therapies for sickle cell disease and beta thalassemia

Early results suggest exa-cel gene therapy works well in children

NTIDE: Disability employment holds steady after data hiatus

Social lives of viruses affect antiviral resistance

Dose of psilocybin, dash of rabies point to treatment for depression

Helping health care providers navigate social, political, and legal barriers to patient care

[Press-News.org] Researchers have broken the code for cell communication