Breakthrough in organic chemistry: Asymmetric syntheses of useful, unique chiral compounds
Researchers in Japan discover a method to synthesize useful and unique compounds called N?C axially chiral compounds
2021-02-16
(Press-News.org) Atropisomers are a class of stereoisomers (chemical compounds that differ in spatial arrangement of atoms) arising from restricted rotation around a single bond and have various applications in chemistry. To date, most research on atropisomers has focused on "biaryl atropisomers" (due to the rotational restriction around a carbon-carbon bond), but it is also possible for atropisomers to arise from rotational restrictions around a nitrogen-carbon (N-C) bond. These N-C axially chiral compounds are found in various natural products and bioactive compounds and thus have promising applications in medicine and agriculture. Furthermore, these are known to be useful as chiral building blocks and chiral ligands.
Of course, before researchers can take advantage of any such applications, they need to develop a feasible method for synthesizing it. "Although a number of bioactive compounds and natural products possessing an N-C axially chiral structure have recently been found, no efficient synthetic method was known," notes Professor Osamu Kitagawa from Shibaura Institute of Technology (SIT), Japan. To address this problem, Prof. Kitagawa and his team have spent the past few decades developing efficient methods for the synthesis of N-C axially chiral compounds. In a paper recently published in Accounts of Chemical Research, Prof Kitagawa summarizes his team's achievements since 2002.
In 2001, Prof. Kitagawa's group started investigating a never-before-attempted catalytic asymmetric synthesis of ortho-tert-butyl anilides and other N-C axially chiral compounds. In 2005, they found that reacting achiral secondary ortho-tert-butylanilides with 4-iodonitrobenzene in the presence of a chiral palladium (Pd) catalyst (catalytic enantioselective aromatic amination) resulted in the highly enantioselective (asymmetric) synthesis of N-C axially chiral N-arylated ortho-tert-butylanilides. They next experimented with adapting this intermolecular N-arylation reaction for use in intramolecular reactions, and their efforts led to the synthesis of compounds called "N-C axially chiral lactams" (which had high optical purities). Importantly, these reactions represented the first enantioselective syntheses of N-C axially chiral compounds with a chiral catalyst.
The investigators continued their work by using chiral Pd-catalyzed intramolecular N-arylations to achieve the enantioselective syntheses of N-C axially chiral quinoline-4-one and phenanthridin-6-one derivatives. They also used various chiral Pd-catalyzed reactions to prepare optically active N-C axially chiral compounds called N-(2-tert-butylphenyl)indoles, 3-(2-bromophenyl)quinazolin-4-ones, and N-(2-tert-butylphenyl)sulfonamides. Prof Kitagawa's research has led to the successful synthesis of potentially useful compounds, such as an N-C axially chiral mebroqualone that acts as an agonist of specific receptors present in the brain, called "GABA receptors" (and has potential therapeutic properties).
In fact, since 2005, the enantioselective synthesis of N-C axially chiral compounds has become a topic of considerable interest to chemists outside of Prof. Kitagawa's research team. For example, the literature on the synthesis of axially chiral anilides with catalytic enantioselective aromatic aminations dates back to 2005, with a research paper by Prof. Kitagawa's team, but since then, other research groups have published more than 70 original papers concerning highly enantioselective synthesis of various N-C axially chiral compounds using chiral catalysts. Further, the team's 2010 paper on the catalytic enantioselective synthesis of N-C axially chiral indoles represented an important contribution to the development of axially chiral indole chemistry, and various research groups have since developed catalytic asymmetric syntheses for various indole derivatives that include a C?C chiral axis or an N-C chiral axis. Prof. Kitagawa himself sees his laboratory's work as having important applications to "the synthesis of optically active drug compounds and natural products with N-C axial chirality."
In conclusion, Prof. Kitagawa's research team has succeeded in devising catalytic enantioselective syntheses of N-C axially chiral compounds. This work has inspired other research teams to make further contributions in the same field and has led to workable synthetic pathways for bioactive compounds with potential medicinal value. Prof Kitagawa predicts that the catalytic asymmetric synthesis of N-C axially chiral compounds will continue to draw attention, thanks to the potential uses of such compounds across a broad range of fields.
INFORMATION:
Reference
Title of original paper: Chiral Pd-Catalyzed Enantioselective Syntheses of Various N-C Axially Chiral Compounds and Their Synthetic Applications
Journal: Accounts of Chemical Research
DOI: 10.1021/acs.accounts.0c00767
About Shibaura Institute of Technology (SIT), Japan
Shibaura Institute of Technology (SIT) is a private university with campuses in Tokyo and Saitama. Since the establishment of its predecessor, Tokyo Higher School of Industry and Commerce, in 1927, it has maintained "learning through practice" as its philosophy in the education of engineers. SIT was the only private science and engineering university selected for the Top Global University Project sponsored by the Ministry of Education, Culture, Sports, Science and Technology and will receive support from the ministry for 10 years starting from the 2014 academic year. Its motto, "Nurturing engineers who learn from society and contribute to society," reflects its mission of fostering scientists and engineers who can contribute to the sustainable growth of the world by exposing their over 8,000 students to culturally diverse environments, where they learn to cope, collaborate, and relate with fellow students from around the world.
Website: https://www.shibaura-it.ac.jp/en/
About Professor Osamu Kitagawa from SIT, Japan
Dr. Osamu Kitagawa received his BS and PhD from the Tokyo University of Pharmacy and Life Science (then called the Tokyo College of Pharmacy) in 1984 and 1989, respectively. He worked as an assistant, a lecturer, and an associate professor at the same university before moving to Shibaura Institute of Technology in 2008. He was promoted to full professor in 2010. His research interests include the chemistry of novel stereoisomeric molecules and development of novel synthetic organic reactions. He has authored 100 articles and has received over 3250 citations.
Funding information
This study was funded by the Research Foundation for Pharmaceutical Sciences and the Japan Society for the Promotion of Science.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-02-16
A POSTECH research team has developed a transparent amorphous silicon that transmits visible light - which permits us to distinguish the colors of objects - enabling the development of paper-thin lenses usable in head-mounted displays (HMD) that show virtual and augmented reality images in real time.
A research team - led by Professor Junsuk Rho of POSTECH's mechanical engineering and chemical engineering departments, and Ph.D. candidate Younghwan Yang and Dr. Gwanho Yoon of the Department of Mechanical Engineering - has developed visibly transparent amorphous silicon by improving the plasma enhanced chemical vapor deposition (PECVD) method, a practice widely used by Korean display manufacturers. ...
2021-02-16
Tsukuba, Japan - Sleep is very important for athletes, and sleep loss can affect physical performance and cognitive ability. But now, researchers from the University of Tsukuba have identified the prevalence of sleep disorders in visually impaired athletes, as well as specific risk factors associated with lower sleep quality.
In a study published last November in Sleep Medicine, researchers from the University of Tsukuba conducted a survey of 99 visually impaired athletes in Japan and analyzed data from 81 respondents. They found that approximately one-third of the respondents had sleep disorders. Further, higher levels of stress regarding interpersonal relationships ...
2021-02-16
CORVALLIS, Ore. - Statistical modeling developed by Oregon State University researchers has confirmed that changes to melanoma patients' gut microbiome led them to respond to a type of treatment capable of providing long-term benefit.
Findings were published in Science.
The modeling technique invented by Andrey Morgun of the OSU College of Pharmacy and Natalia Shulzenko of Oregon State's Carlson College of Veterinary Medicine is known as transkingdom network analysis.
The human gut microbiome is a community of more than 10 trillion microbial cells from about 1,000 different bacterial species, and transkingdom network analysis integrates ...
2021-02-16
Water is a necessity for all life but its availability can be limited. In geographical areas experiencing dry seasons, animals congregate near the few freshwater sources, often reaching large densities. At these sites many animals from different species come to the same spots to drink, potentially operating as key locations for pathogen transmission within and between species. An international team of scientists lead by the German Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) suggests that viruses can use restricted freshwater sources as a vector to be spread among animals. The key prediction of this idea is that animal viruses remain stable and infectious in water. The team ...
2021-02-16
The effects of microplastics on our health and the environment are being rigorously studied all across the world. Researchers are identifying microplastic sources and their potential routes to the environment by examining rainwater, wastewater, and soil.
Microplastics have been found in nearly all organisms and habitats everywhere in the world. However, factors contributing to the influx and accumulation of microplastics in water ecosystems aren't fully understood yet. The focus of microplastics research has, for a long time, been on the age of microplastics found in sediments, and on the ...
2021-02-16
The researchers analysed cells, mouse models, and human patient samples using biochemical, mathematical, and biophysical methods. They identified a protein present in the mesh-like membrane structure (the basement membrane) associated with tumour and vessel softness, and good survival of cancer patients. The researchers tested if removing this protein from the basement membrane would enhance the spread of cancer, which it did, and if supply of this protein would reduce cancer spread, which it did. They proceeded to show that the levels of this protein (netrin-4) already present in basement membrane of organs may determine cancer spread even before cancer develops, ...
2021-02-16
Cells of organisms are organized in subcellular compartments that consist of many individual molecules. How these single proteins are organized on the molecular level remains unclear, because suitable analytical methods are still missing. Researchers at the University of Münster together with colleagues from the Max Planck Institute of Biochemistry (Munich, Germany) have established a new technique that enables quantifying molecular densities and nanoscale organizations of individual proteins inside cells. The first application of this approach reveals a complex of three adhesion proteins that appears to be crucial for the ability of cells to adhere to the surrounding tissue. The research results have been published in the journal Nature ...
2021-02-16
Using an advanced technique, scientists from the RIKEN Cluster for Pioneering Research have demonstrated that a chemical reaction powered by light takes place ten thousand times faster at the air-water interface--what we usually call the water surface--than in the bulk of the water, even when the light has equivalent energy. This finding could help our understanding of the many important chemical and biological processes that take place at the water surface.
Water is the most important liquid in nature, and research has shown that there is in fact something special about the interface. For reasons that were not well understood, it appears that some chemical reactions take place readily when the molecules are partly in the water, but not when they are fully ...
2021-02-16
The risk of both mortality and rehospitalisation after an elective revascularisation procedure for coronary artery disease is similar for people with and without Alzheimer's disease (AD), but people with AD had worse outcomes after an emergency procedure, according to a new study from the University of Eastern Finland.
Previous studies have investigated the effectiveness of revascularisation in persons with cognitive disorders, but only in terms of short-term outcomes and in acute care settings, and they also have not accounted for electivity. Similar to previous ...
2021-02-16
New analysis published in The Lancet Psychiatry has shown a lack of strong evidence to support current guidance on psychological therapies for treating anorexia nervosa over expert treatment as usual.
The findings highlight a need for further research and support a call for individual trial data to be made available so the benefits of treatments in specific patient populations can be better understood.
Conducted by an international team of clinical experts and researchers, the analysis included 13 randomised controlled trials and a total of 1049 patients. The studies compared psychological therapies to treatment as usual in adults receiving outpatient treatment for anorexia. The trials measured eating disorder ...
LAST 30 PRESS RELEASES:
[Press-News.org] Breakthrough in organic chemistry: Asymmetric syntheses of useful, unique chiral compounds
Researchers in Japan discover a method to synthesize useful and unique compounds called N?C axially chiral compounds