PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

New experiences enhance learning by resetting key brain circuit

NIH-funded study shows how novelty triggers neural mechanisms that facilitate flexible strategy encoding

2021-02-24
(Press-News.org) A study of spatial learning in mice shows that exposure to new experiences dampens established representations in the brain's hippocampus and prefrontal cortex, allowing the mice to learn new navigation strategies. The study, published in Nature, was supported by the National Institutes of Health.

"The ability to flexibly learn in new situations makes it possible to adapt to an ever-changing world," noted Joshua A. Gordon, M.D., Ph.D., a senior author on the study and director of the National Institute of Mental Health, part of NIH. "Understanding the neural basis of this flexible learning in animals gives us insight into how this type of learning may become disrupted in humans."

Dr. Gordon co-supervised the research project with Joseph A. Gogos, M.D., Ph.D., and Alexander Z. Harris, M.D., Ph.D., both of Columbia University, New York City.

Whenever we encounter new information, that information must be consolidated into a stable, lasting memory for us to recall it later. A key mechanism in this memory consolidation process is long-term potentiation, which is a persistent strengthening of neural connections based on recent patterns of activity. Although this strengthening of neural connections may be persistent, it can't be permanent, or we wouldn't be able to update memory representations to accommodate new information. In other words, our ability to remember new experiences and learn from them depends on information encoding that is both enduring and flexible.

To understand the specific neural mechanisms that make this plasticity possible, the research team, led by Alan J. Park, Ph.D., of Columbia, examined spatial learning in mice.

Spatial learning depends on a key circuit between the ventral hippocampus (a structure located in the middle of the brain) and the medial prefrontal cortex (located just behind the forehead). Connectivity between these brain structures strengthens over the course of spatial learning. If the connectivity remains at maximum strength, however, it impairs later adaptation to new tasks and rules. The researchers hypothesized that exposure to a new experience may serve as an environmental trigger that dampens established hippocampal-prefrontal connectivity, enabling flexible spatial learning.

In the first task, the researchers trained mice to navigate a maze in a certain way to receive a reward. Some of the mice were then allowed to explore a space they hadn't seen before, while others explored a familiar space. The mice then engaged in a second spatial task, which required that they switch to a new navigation strategy to get a reward.

As expected, all of the mice favored their original navigation strategy at first. But the mice that had explored a new space gradually overcame this bias and successfully learned the new navigation strategy about halfway through the 40-trial training session. When the researchers tested a subset of the mice on the first task again, they found that the novelty-exposed mice were able to switch back to the original strategy, indicating that they updated and chose their strategy according to the task demands.

Additional findings showed that the effects of novelty extended beyond new spaces: Encountering new mice before the second task also enhanced learning of the new reward strategy.

Changes in brain activity throughout training revealed the neuronal mechanisms that drive this novelty-enhanced learning. In rodents, there is a well-defined firing pattern in the hippocampus known as the theta wave, which is thought to play a central role in learning and memory. When Park and coauthors examined recordings from the ventral hippocampus, they found that the theta wave became stronger during exploration of the novel arena and the hour that followed; the theta wave decreased as the mice became familiar with the arena over the next two days. The researchers found that novelty exposure also disrupted encoding of the original navigation strategy, reorganizing the firing pattern of individual neurons in the ventral hippocampus to bring them in sync with the theta wave.

At the same time, neurons in the medial prefrontal cortex showed decreased theta wave synchrony, and correlations between hippocampal activity and prefrontal activity weakened. These and other findings suggest that novelty exposure dampened the synaptic connections between the ventral hippocampus and medial prefrontal cortex, resetting the circuit to allow for subsequent strengthening of connectivity associated with learning.

By triggering this reset, novelty appears to facilitate strategy updating in response to the task's specific reward structure. Machine learning analyses indicated that, following novelty exposure, ventral hippocampal neurons switched encoding from a strategy that predicted reward on the first task to one that predicted reward on the second task. The task-specific information was then relayed to the medial prefrontal neurons, which updated encoding accordingly.

On a chemical level, the neurotransmitter dopamine acts as a key mediator of this plasticity. Several experiments showed that activating dopamine D1-receptors in the ventral hippocampus led to novelty-like effects, including dampened hippocampal-prefrontal connectivity and enhanced learning. Blocking D1-receptors prevented these novelty-induced effects.

Together, these findings shed light on some of the brain mechanisms that play a role in flexible information encoding.

"Our study points to novelty as one way to trigger the circuitry reset that facilitates spatial learning in mice," said Park. "The next step is to build on these findings and explore whether novelty plays a similar role in human memory and learning."

INFORMATION:

Reference: Park, A. J., Harris, A. Z., Martyniuk, K. M., Chang, C.-Y., Abbas, A. I., Lowes, D. C., Kellendonk, C., Gogos, J. A., & Gordon, J. A. (2021). Reset of hippocampal-prefrontal circuitry facilitates learning. Nature. doi: 10.1038/s41586-021-03272-1

This press release describes a basic research finding. Basic research increases our understanding of human behavior and biology, which is foundational to advancing new and better ways to prevent, diagnose, and treat disease. Science is an unpredictable and incremental process -- each research advance builds on past discoveries, often in unexpected ways. Most clinical advances would not be possible without the knowledge of fundamental basic research. To learn more about basic research, visit https://www.nih.gov/news-events/basic-research-digital-media-kit.

About the National Institute of Mental Health (NIMH): The mission of the NIMH is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure. For more information, visit the NIMH website.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit the NIH website.

NIH...Turning Discovery Into Health®



ELSE PRESS RELEASES FROM THIS DATE:

Nature's funhouse mirror: understanding asymmetry in the proton

Natures funhouse mirror: understanding asymmetry in the proton
2021-02-24
Asymmetry in the proton confounds physicists, but a new discovery may bring back old theories to explain it. Symmetry -- displayed in areas ranging from mathematics and art, to living organisms and galaxies -- is an important underlying structure in nature. It characterizes our universe and enables it to be studied and understood. Because symmetry is such a pervasive theme in nature, physicists are especially intrigued when an object seems like it should be symmetric, but it isn't. When scientists are confronted with these broken symmetries, it's as if they've found an object with a strange reflection in the mirror. "Nature is leading the way for concepts in older models of the proton to get a second look." -- ...

Materials scientists show way to make durable artificial tendons from improved hydrogels

2021-02-24
UCLA materials scientists and their colleagues have developed a new method to make synthetic biomaterials that mimic the internal structure, stretchiness, strength and durability of tendons and other biological tissues. The researchers developed a two-pronged process to enhance the strength of existing hydrogels that could be used to create artificial tendons, ligaments, cartilage that are 10 times tougher than the natural tissues. Although the hydrogels contain mostly water with little solid content (about 10% polymer), they are more durable than Kevlar and rubber, which are both 100% polymer. This kind of breakthrough has never been achieved in water-laden polymers until this study, which was recently published in Nature. ...

Cancer research to gain from identification of 300 proteins that regulate cell division

Cancer research to gain from identification of 300 proteins that regulate cell division
2021-02-24
With the hope of contributing to the fight against cancer, researchers in Sweden have published a new molecular mapping of proteins that regulate the cell division process - identifying 300 such proteins. The release of the data, which was published today in the scientific journal, Nature, is significant because it helps bring medical research closer to the point of being able to target specific proteins to treat cancer. Identifying and understanding what characterizes these proteins is important, says co-author Emma Lundberg, a professor at KTH Royal Institute of Technology whose research group at Science ...

Characteristics, outcomes of US children, adolescents with multisystem inflammatory syndrome in children compared with severe COVID-19

2021-02-24
What The Study Did: National COVID-19 registry data are used in this study to describe the epidemiology, clinical characteristics, complications, and hospital and postdischarge outcomes of pediatric patients with multisystem inflammatory syndrome in children (MIS-C) and to compare each in patients with severe COVID-19. Authors: Adrienne G. Randolph, M.D., of Boston Children's Hospital, is the corresponding author. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jama.2021.2091) Editor's Note: The article includes conflict of ...

Subcutaneous semaglutide vs. placebo as adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity

2021-02-24
What The Study Did: This randomized clinical trial compares the effects of once-weekly subcutaneous semaglutide versussplacebo for weight management as an adjunct to intensive behavioral therapy with initial low-calorie diet in adults with overweight or obesity. Authors: Thomas A. Wadden, Ph.D., of the University of Pennsylvania in Philadelphia, is the corresponding author. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jama.2021.1831) Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions ...

Efficient, systematic genetic analysis helps dissect disease inheritance

Efficient, systematic genetic analysis helps dissect disease inheritance
2021-02-24
Many genetic variants have been found to have a linkage with genetic diseases, but the understanding of their functional roles in causing diseases are still limited. An international research team, including a biomedical scientist from City University of Hong Kong (CityU), has developed a high-throughput biological assay technique which enabled them to conduct a systematic analysis on the impact of nearly 100,000 genetic variants on the binding of transcription factors to DNA. Their findings provided valuable data for finding key biomarkers of type 2 diabetes for diagnostics and treatments. And they ...

Transplant patients may not need steroid treatment in the long run

Transplant patients may not need steroid treatment in the long run
2021-02-24
Long-term use of a medication used to treat kidney transplant patients may not be necessary in individuals with low-to-moderate risk of organ rejection, according to the results of a study led by a University of Cincinnati transplant researcher. The randomized clinical trial of 385 patients on immunosuppressive drugs tacrolimus and mycophenolate examined whether use of these medicines called corticosteroids could be eliminated at seven days after kidney transplantation. The study shows that 15 years after transplantation no difference in kidney transplant survival or patient survival rates were found between patients who received long-term corticosteroids versus those who had corticosteroid eliminated early, explains E. Steve Woodle, MD, the William ...

Researchers find new way to diagnose potential for Alzheimer's disease method less invasive, costly

Researchers find new way to diagnose potential for Alzheimers disease method less invasive, costly
2021-02-24
MEMPHIS, TN, FEBRUARY 24, 2021:- Early diagnosis of Alzheimer's disease has been shown to reduce cost and improve patient outcomes, but current diagnostic approaches can be invasive and costly. A recent study, published in the Journal of Alzheimer's Disease, has found a novel way to identify a high potential for developing Alzheimer's disease before symptoms occur. Ray Romano, Ph.D., RN, completed the research as part of his Ph.D. in the Nursing Science Program at the University of Tennessee Health Science Center (UTHSC) College of Graduate Health Sciences. Dr. Romano conducted the research through the joint laboratory ...

An intelligent soft material that curls under pressure or expands when stretched (video)

An intelligent soft material that curls under pressure or expands when stretched (video)
2021-02-24
Plants and animals can rapidly respond to changes in their environment, such as a Venus flytrap snapping shut when a fly touches it. However, replicating similar actions in soft robots requires complex mechanics and sensors. Now, researchers reporting in ACS Applied Materials & Interfaces have printed liquid metal circuits onto a single piece of soft polymer, creating an intelligent material that curls under pressure or mechanical strain. Watch a video of the smart material here. Ideally, soft robots could mimic intelligent and autonomous behaviors ...

1st dose COVID-19 vaccination coverage among skilled nursing facility residents, staff

2021-02-24
What The Article Says: This JAMA Insights review from Centers for Disease Control and Prevention COVID-19 Response team members presents data on the number of long-term care facilities and the numbers of residents and staff of those facilities who received first-dose vaccination through mid-January under the agency's public-private partnership with CVS, Walgreens and Managed Health Care Associates. Authors: Radhika Gharpure, D.V.M., M.P.H., of the COVID-19 Response at the CDC, is the corresponding author. To access the embargoed study: Visit ...

LAST 30 PRESS RELEASES:

Earth’s air war: Explaining the delayed rise of plants, animals on land

More than half of college students report alcohol-related harms from others

Smart food drying techniques with AI enhance product quality and efficiency

Typical cost of developing new pharmaceuticals is skewed by high-cost outliers

Predicting the progression of autoimmune disease with AI

Unlocking Romance: UCLA offers dating program for autistic adults

Research Spotlight: Researchers reveal the influences behind timing of sleep spindle production

New research reveals groundwater pathways across continent

Students and faculty to join research teams this spring at Department of Energy National Laboratories and a fusion facility

SETI Forward recognizes tomorrow’s cosmic pioneers

Top mental health research achievements of 2024 from the Brain & Behavior Research Foundation

FAU names Lewis S. Nelson, M.D., Dean of the Schmidt College of Medicine

UC Irvine-led study challenges traditional risk factors for brain health in the oldest-old

Study shows head trauma may activate latent viruses, leading to neurodegeneration

Advancements in neural implant research enhance durability

SwRI models Pluto-Charon formation scenario that mimics Earth-Moon system

Researchers identify public policies that work to prevent suicide

Korea University College of Medicine and Yale Univeristy co-host forum on Advancing Healthcare through Data and AI Innovations

Nuclear lipid droplets: Key regulators of aging and nuclear homeostasis

Driving autonomous vehicles to a more efficient future

Severe maternal morbidity among pregnant people with opioid use disorder enrolled in Medicaid

Macronutrients in human milk exposed to antidepressant and anti-inflammatory medications

Exploring the eco-friendly future of antibiotic particles

Can you steam away prostate cancer?

The CTAO becomes a European Research Infrastructure Consortium

Introduction to science journalism guide published in Albanian

Official launch of Global Heat Health Information Network Southeast Asia Hub at NUS Medicine

Childhood smoking increases a person’s risk of developing COPD

MD Anderson and Myriad Genetics form strategic alliance to evaluate clinical utility of Myriad’s molecular residual disease assay

Method can detect harmful salts forming in nuclear waste melters

[Press-News.org] New experiences enhance learning by resetting key brain circuit
NIH-funded study shows how novelty triggers neural mechanisms that facilitate flexible strategy encoding