PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

March science snapshots

COVID genetic mystery, power outage costs, Alzheimer pathology, optical antennas

March science snapshots
2021-03-04
(Press-News.org) Solving a Genetic Mystery at the Heart of the COVID-19 Pandemic

As the COVID-19 pandemic enters its second year, scientists are still working to understand how the new strain of coronavirus evolved, and how it became so much more dangerous than other coronaviruses, which humans have been living alongside for millennia.

Virologists and epidemiologists worldwide have speculated for months that a protein called ORF8 likely holds the answer, and a recent study by Berkeley Lab scientists has helped confirm this hypothesis.

In a paper published in mBio, lead author Russell Neches and his colleagues show that ORF8 evolved from another coronavirus protein called ORF7a, and that both proteins have folds similar to that of a human antibody. This finding helps to explain how the virus avoids immune detection and is able to escalate into a severe infection in some hosts.

"By exploring the structural and functional characteristics of ORF8, and using supercomputers to look at the genomes of over 200,000 viruses, we discovered a striking and highly unusual evolutionary strategy," said co-author Nikos Kyrpides, a computational biologist at the DOE Joint Genome Institute (JGI). "Amazingly, it seems that within the SARS clade, the gene encoding ORF7a is used as a 'template' gene, remaining stable, with a duplicate copy of this gene evolving to a point almost beyond recognition." SARS-CoV-2 arose and exploded into a pandemic when a SARS strain's duplicate ORF7a gene happened to mutate leading to a new protein (which we now call ORF8) that gave it the ability to interfere with immune cells.

According to the team, a similar event occurred in the SARS-CoV strain that caused the SARS epidemic in the early 2000s. In that instance, a copy of the ORF7a gene split into two, resulting in ORF8a and ORF8b proteins.

Christos Ouzounis, senior author of the study and a JGI affiliate scientist, noted that the connection between ORF8 and ORF7a was initially quite difficult to make, due to how little was known about this set of genes and their encoded proteins compared with the existing knowledge about surface proteins (such as the infamous spike protein), and because ORF8 and ORF7a currently seem wildly different. ORF7a is highly stable, mutation resistant protein that interacts with very few mammalian host proteins, whereas ORF8 is encoded by the most mutation prone gene in the viral genome, and is now known to be involved in dozens of interactions in the human body.

"Our findings - and their confirmation by parallel sequence and structure studies - reveal ORF8 to be an evolutionary hotspot in the SARS lineage. The lack of knowledge about the role of these genes has diverted attention to the more well-understood genes, but we now know more about this gene and hopefully it will receive more attention from the community," said Kyrpides.

This work was supported by the ExaBiome Project, a Berkeley Lab-led collaboration which develops supercomputing tools for microbiome analysis. JGI is an Office of Science user facility.


Assessing the Costs of Major Power Outages

Little is known about the full impact of widespread, long duration power interruptions, especially the indirect costs and related economy-wide impacts of these events. As a result, the costs of such power interruptions are generally not or only incompletely considered in utility planning activities.

A new Berkeley Lab report titled "A Hybrid Approach to Estimating the Economic Value of Enhanced Power System Resilience" describes a new approach for estimating the economic costs of widespread, long duration power interruptions, such as the one that occurred recently in Texas. This hybrid method involves using survey responses from utility customers to calibrate a regional economic model that is able to estimate both the direct and indirect costs of these events.

"We believe that this paper is an important breakthrough for researchers interested in estimating the full economic impact of widespread, long duration power disruptions," said Berkeley Lab researcher Peter Larsen.

A second report, titled "Case Studies of the Economic Impacts of Power Interruptions and Damage to Electricity System Infrastructure from Extreme Events," analyzes in detail the economics of power interruptions caused by extreme weather. The researchers examined the effects of Hurricane Harvey in Texas, wildfires in California, and four other extreme events; they found that even years after the events, utility companies had a clear picture of the costs of physical repairs but had not tallied the human and societal costs of the outages. (Researchers from the University of Texas at Austin were co-authors of this report; read their news release about the report here.)

"Our research shows that utilities, regulators, and other stakeholders rarely, if ever, account for the direct and indirect costs of power disruptions in their decision-making," Larsen said.


Location, Location, Location: Regional Tau Deposits in Healthy Elders Predict Alzheimer Disease

Subtle memory deficits are common in normal aging as well as Alzheimer disease (AD), the leading cause of dementia in older adults. This makes AD difficult to diagnose in its early stages. As there is currently no effective treatment to slow or stop the progression of AD, it is important to identify early pathological brain changes, which can start decades before people show symptoms, and then trace the effects that lead to cognitive decline.

Xi Chen and her colleagues in Bill Jagust's research group at Berkeley Lab recently published a study in the Journal of Neuroscience that provides some clarification of the differences between normal aging and AD brains, and elucidates the transition from the former to the latter.

Using positron emission tomography (PET) imaging, they measured levels of tau and beta amyloid (Aß) - two critical biomarkers of AD - in cognitively normal older adults, and then followed them for several years for prospective cognition assessment. Their findings revealed new insight into tau, a protein that helps stabilize the internal skeleton of neurons in its normal form, but becomes unstable and can interfere with neuron functioning when aggregated. Aggregated tau deposits in the entorhinal cortex, a major part of the memory system, likely reflect normal, age-related memory impairment. However, tau deposits in anterior temporal regions of the brain - responsible for our knowledge of objects, people, words, and facts - were most predictive of AD-related impairment. The finding supports a model of early AD pathology proposed by the researchers whereby tau spreads from the entorhinal cortex to anterior temporal regions facilitated by amyloid.

The team suggests that the presence of tau aggregates in anterior temporal regions could be used as a marker of early disease progression.


New Optical Antennas Could Overcome Data Limits

Researchers at Berkeley Lab and UC Berkeley have found a new way to harness properties of lightwaves that can radically increase the amount of data they carry. They demonstrated the emission of discrete twisting laser beams from antennas made up of concentric rings roughly equal to the diameter of a human hair, small enough to be placed on computer chips.

The new work, reported in a paper published Feb. 25 in the journal Nature Physics, throws wide open the amount of information that can be multiplexed, or simultaneously transmitted, by a coherent light source. A common example of multiplexing is the transmission of multiple telephone calls over a single wire, but there had been fundamental limits to the number of coherent twisted lightwaves that could be directly multiplexed.

"It's the first time that lasers producing twisted light have been directly multiplexed," said senior author Boubacar Kanté, a faculty scientist in Berkeley Lab's Materials Sciences Division and the Chenming Hu Associate Professor in UC Berkeley's Department of Electrical Engineering and Computer Sciences. "We've been experiencing an explosion of data in our world, and the communication channels we have now will soon be insufficient for what we need. The technology we are reporting overcomes current data capacity limits through a characteristic of light called the orbital angular momentum. It is a game-changer with applications in biological imaging, quantum cryptography, high-capacity communications and sensors."

Read the full UC Berkeley release here.

INFORMATION:


[Attachments] See images for this press release:
March science snapshots

ELSE PRESS RELEASES FROM THIS DATE:

Porous crystal guides reaction to transform CO2

Porous crystal guides reaction to transform CO2
2021-03-04
By embedding a silver catalyst inside a porous crystal, KAUST researchers have improved a chemical reaction that converts carbon dioxide (CO2) into carbon monoxide (CO), which is a useful feedstock for the chemical industry. Carbon monoxide is a building block for producing hydrocarbon fuels, and many researchers are searching for ways to produce it from CO2, a greenhouse gas emitted by burning fossil fuels. One strategy involves using electricity and a catalyst to drive a so-called CO2 reduction reaction. But this reaction typically produces a variety of other products, including methane, methanol and ethylene. Separating these products significantly raises the cost of the process, ...

SUTD study uncovers how big droughts in the Greater Mekong trigger CO2 emission bursts

SUTD study uncovers how big droughts in the Greater Mekong trigger CO2 emission bursts
2021-03-04
A study on big droughts in the Greater Mekong region revealed findings that can help reduce the carbon footprint of power systems while providing insights into better designed and more sustainable power plants. The study, titled 'The Greater Mekong's climate-water-energy nexus: how ENSO-triggered regional droughts affect power supply and CO2 emissions', was published by researchers from the Singapore University of Technology and Design (SUTD) and the University of California, Santa Barbara, in the journal Earth's Future. Known as an important means to support economic growth in Southeast Asia, the hydropower resources of the Mekong River Basin have been largely exploited by the riparian countries. The researchers ...

Zinc oxide: key component for the methanol synthesis reaction over copper catalysts

Zinc oxide: key component for the methanol synthesis reaction over copper catalysts
2021-03-04
The current commercial production of methanol through the hydrogenation of the green-house gas CO2 relies on a catalyst consisting of copper, zinc oxide and aluminum oxide. Even though this catalyst has been used for many decades in the chemical industry, unknowns still remain. A team of researchers from the Interface Science Department of the Fritz-Haber-Institute of the Max Planck Society, the Ruhr-University Bochum, Stanford Linear Accelerator Center (SLAC), FZ Juelich and Brookhaven National Laboratory have now elucidated the origin of intriguing catalytic activity and selectivity trends of complex nanocatalysts ...

Cutting off stealthy interlopers: a framework for secure cyber-physical systems

Cutting off stealthy interlopers: a framework for secure cyber-physical systems
2021-03-04
In 2015, hackers infiltrated the corporate network of Ukraine's power grid and injected malicious software, which caused a massive power outage. Such cyberattacks, along with the dangers to society that they represent, could become more common as the number of cyber-physical systems (CPS) increases. A CPS is any system controlled by a network involving physical elements that tangibly interact with the material world. CPSs are incredibly common in industries, especially those integrating robotics or similar automated machinery to the production line. However, as CPSs make their way into societal infrastructures such as public transport and energy management, it becomes even more important to ...

Large number of COVID-19 survivors will experience cognitive complications

2021-03-04
A research review led by Oxford Brookes University has found a large proportion of COVID-19 survivors will be affected by neuropsychiatric and cognitive complications. Psychologists at Oxford Brookes University and a psychiatrist from Oxford Health NHS Foundation Trust, evaluated published research papers in order to understand more about the possible effects of the SARS-COV-2 infection on the brain, and the extent people can expect to experience short and long-term mental health issues. Patients experienced a range of psychiatric problems The study found that in the short term, a wide range of neuropsychiatric problems were reported. In one examined study, 95% of clinically ...

University of Limerick, Ireland, research identifies secrets of Fantasy Premier League success

2021-03-04
As millions of Fantasy Premier League players mull over a decision whether to start Bruno Fernandes or Mohamed Salah in their teams this weekend, new research by the University of Limerick in Ireland has unlocked the secrets of the popular online game. A new study by a team of researchers at UL has identified the underlying tactics used by the top-ranked competitors among the seven million players of Fantasy Premier League (FPL), the official - and world's largest - fantasy football game of the English Premier League. Joseph O'Brien, Professor James Gleeson, and Dr David O'Sullivan, based within the ...

Legal wildlife trade needs monitoring to reduce risk of a new pandemic

Legal wildlife trade needs monitoring to reduce risk of a new pandemic
2021-03-04
With three out of four newly emerging infectious human diseases originating in animals*, there is an urgent need to monitor the legal trade in wildlife, according to new research by Vincent Nijman, Professor in Anthropology at Oxford Brookes University. Professor Nijman, who has been involved in monitoring and regulating the legal wildlife trade for over two decades, said: "Covid-19 more than anything else has put a spotlight on emerging infectious diseases and how this is linked to the trade in wild animals. Few people are aware of its scale. With literally hundreds of millions ...

Protein discovery could help enable eco-friendly fungicides

Protein discovery could help enable eco-friendly fungicides
2021-03-04
New research reveals an essential step in scientists' quest to create targeted, more eco-friendly fungicides that protect food crops. Scientists have known for decades that biological cells manufacture tiny, round structures called extracellular vesicles. However, their pivotal roles in communication between invading microorganisms and their hosts were recognized only recently. UC Riverside geneticist Hailing Jin and her team found plants use these vesicles to launch RNA molecules at fungal invaders, suppressing the genes that make the fungi dangerous. "These vesicles shuttle small RNAs between cells, like tiny Trojan horses with weapons hidden inside," said Jin, a professor of genetics and the Cy Mouradick Chair in the Department of Plant Pathology and Microbiology. ...

Magnetic whirls in confined spaces

Magnetic whirls in confined spaces
2021-03-04
In a close collaboration between experimental and theoretical physicists at Johannes Gutenberg University Mainz (JGU), the research groups of Professor Mathias Kläui and Dr. Peter Virnau investigated the behavior of magnetic whirls within nanoscale geometric structures. In their work published in Advanced Functional Materials, the researchers confined small magnetic whirls, so-called skyrmions, in geometric structures. Skyrmions can be created in thin metal films and have particle-like properties: They exhibit high stability and are repelled from each other and from specially prepared walls. Experiments and accompanying computer simulations showed that the mobility of skyrmions within these geometric structures depends massively on their arrangement. In triangles, ...

Metallic state of Ag nanoclusters in oxidative dispersion identified in situ

Metallic state of Ag nanoclusters in oxidative dispersion identified in situ
2021-03-04
Oxidative dispersion has been widely used in the regeneration of sintered metal catalysts as well as the fabrication of single-atom catalysts. The consensus on the oxidative dispersion process includes the formation of mobile metal oxide species from large metal particles and the capture of these species on a support surface. Nevertheless, the mechanism of oxidation-induced dispersion has yet to be confirmed via in situ electron microscopic and/or spectroscopic characterizations. Recently, a research team led by Prof. FU Qiang and Prof. BAO Xinhe from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Prof. YANG Bing from DICP and Prof. GAO Yi ...

LAST 30 PRESS RELEASES:

Depression research pioneer Dr. Philip Gold maps disease's full-body impact

Rapid growth of global wildland-urban interface associated with wildfire risk, study shows

Generation of rat offspring from ovarian oocytes by Cross-species transplantation

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

Compound metalens achieves distortion-free imaging with wide field of view

Age on the molecular level: showing changes through proteins

Label distribution similarity-based noise correction for crowdsourcing

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall

Emerging alternatives to reduce animal testing show promise

Presenting Evo – a model for decoding and designing genetic sequences

[Press-News.org] March science snapshots
COVID genetic mystery, power outage costs, Alzheimer pathology, optical antennas