PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Original error

Retracing the history of the mutation that gave rise to cancer decades later

2021-03-04
(Press-News.org) There is no stronger risk factor for cancer than age. At the time of diagnosis, the median age of patients across all cancers is 66. That moment, however, is the culmination of years of clandestine tumor growth, and the answer to an important question has thus far remained elusive: When does a cancer first arise?

At least in some cases, the original cancer-causing mutation could have appeared as long as 40 years ago, according to a new study by researchers at Harvard Medical School and the Dana-Farber Cancer Institute.

Reconstructing the lineage history of cancer cells in two individuals with a rare blood cancer, the team calculated when the genetic mutation that gave rise to the disease first appeared. In a 63-year-old patient, it occurred at around age 19; in a 34-year-old patient, at around age 9.

The findings, published in the March 4 issue of Cell Stem Cell, add to a growing body of evidence that cancers slowly develop over long periods of time before manifesting as a distinct disease. The results also present insights that could inform new approaches for early detection, prevention, or intervention.

"For both of these patients, it was almost like they had a childhood disease that just took decades and decades to manifest, which was extremely surprising," said co-corresponding study author Sahand Hormoz, HMS assistant professor of systems biology at Dana-Farber.

"I think our study compels us to ask, when does cancer begin, and when does being healthy stop?" Hormoz said. "It increasingly appears that it's a continuum with no clear boundary, which then raises another question: When should we be looking for cancer?"

In their study, Hormoz and colleagues focused on myeloproliferative neoplasms (MPNs), a rare type of blood cancer involving the aberrant overproduction of blood cells. The majority of MPNs are linked to a specific mutation in the gene JAK2. When the mutation occurs in bone marrow stem cells, the body's blood cell production factories, it can erroneously activate JAK2 and trigger overproduction.

To pinpoint the origins of an individual's cancer, the team collected bone marrow stem cells from two patients with MPN driven by the JAK2 mutation. The researchers isolated a number of stem cells that contained the mutation, as well normal stem cells, from each patient, and then sequenced the entire genome of each individual cell.

Over time and by chance, the genomes of cells randomly acquire so-called somatic mutations--nonheritable, spontaneous changes that are largely harmless. Two cells that recently divided from the same mother cell will have very similar somatic mutation fingerprints. But two distantly related cells that shared a common ancestor many generations ago will have fewer mutations in common because they had the time to accumulate mutations separately.

Cell of origin

Analyzing these fingerprints, Hormoz and colleagues created a phylogenetic tree, which maps the relationships and common ancestors between cells, for the patients' stem cells--a process similar to studies of the relationships between chimpanzees and humans, for example.

"We can reconstruct the evolutionary history of these cancer cells, going back to that cell of origin, the common ancestor in which the first mutation occurred," Hormoz said.

Combined with calculations of the rate at which mutations accumulate, the team could estimate when the JAK2 mutation first occurred. In the patient who was first diagnosed with MPN at age 63, the team found that the mutation arose around 44 years prior, at the age of 19. In the patient diagnosed at age 34, it arose at age 9.

By looking at the relationships between cells, the researchers could also estimate the number of cells that carried the mutation over time, allowing them to reconstruct the history of disease progression.

"Initially, there's one cell that has the mutation. And for the next 10 years there's only something like 100 cancer cells," Hormoz said. "But over time, the number grows exponentially and becomes thousands and thousands. We've had the notion that cancer takes a very long time to become an overt disease, but no one has shown this so explicitly until now."

The team found that the JAK2 mutation conferred a certain fitness advantage that helped cancerous cells outcompete normal bone marrow stem cells over long periods of time. The magnitude of this selective advantage is one possible explanation for some individuals' faster disease progression, such as the patient who was diagnosed with MPN at age 34.

In additional experiments, the team carried out single-cell gene expression analyses in thousands of bone marrow stem cells from seven different MPN patients. These analyses revealed that the JAK2 mutation can push stem cells to preferentially produce certain blood cell types, insights that may help scientists better understand the differences between various MPN types.

Together, the results of the study offer insights that could motivate new diagnostics, such as technologies to identify the presence of rare cancer-causing mutations currently difficult to detect, according to the authors.

"To me, the most exciting thing is thinking about at what point can we detect these cancers," Hormoz said. "If patients are walking into the clinic 40 years after their mutation first developed, could we have caught it earlier? And could we prevent the development of cancer before a patient ever knows they have it, which would be the ultimate dream?"

The researchers are now further refining their approach to studying the history of cancers, with the aim of helping clinical decision-making in the future.

While their approach is generalizable to other types of cancer, Hormoz notes that MPN is driven by a single mutation in a very slow growing type of stem cell. Other cancers may be driven by multiple mutations, or in faster-growing cell types, and further studies are needed to better understand the differences in evolutionary history between cancers.

The team's current efforts include developing early detection technologies, reconstructing the histories of greater numbers of cancer cells, and investigating why some patients' mutations never progress into full-blown cancer, but others do.

"Even if we can detect cancer-causing mutations early, the challenge is to predict which patients are at risk of developing the disease, and which are not," Hormoz said. "Looking into the past can tell us something about the future, and I think historical analyses such as the ones we conducted can give us new insights into how we could be diagnosing and intervening."

INFORMATION:

Study collaborators include scientists and physicians from Brigham and Women's Hospital, Boston Children's Hospital, Massachusetts General Hospital, and the European Bioinformatics Institute. The other co-corresponding authors of the study are Ann Mullally and Isidro Cortés-Ciriano.

Additional authors include Debra Van Egeren, Javier Escabi, Maximilian Nguyen, Shichen Liu, Christopher Reilly, Sachin Patel, Baransel Kamaz, Maria Kalyva, Daniel DeAngelo, Ilene Galinsky, Martha Wadleigh, Eric Winer, Marlise Luskin, Richard Stone, Jacqueline Garcia, Gabriela Hobbs, Fernando Camargo, and Franziska Michor.

The study was supported in part by the National Institutes of Health (grants R00GM118910, R01HL158269), the Jayne Koskinas Ted Giovanis Foundation for Health and Policy, the William F. Milton Fund at Harvard University, an AACR-MPM Oncology Charitable Foundation Transformative Cancer Research grant, Gabrielle's Angel Foundation for Cancer Research, and the Claudia Adams Barr Program in Cancer Research.

DOI: 10.1016/j.stem.2021.02.001



ELSE PRESS RELEASES FROM THIS DATE:

Extreme-scale computing and AI forecast a promising future for fusion power

Extreme-scale computing and AI forecast a promising future for fusion power
2021-03-04
Efforts to duplicate on Earth the fusion reactions that power the sun and stars for unlimited energy must contend with extreme heat-load density that can damage the doughnut-shaped fusion facilities called tokamaks, the most widely used laboratory facilities that house fusion reactions, and shut them down. These loads flow against the walls of what are called divertor plates that extract waste heat from the tokamaks. Far larger forecast But using high-performance computers and artificial intelligence (AI), researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have predicted a far larger and less damaging heat-load width for the full-power operation of ITER, the international tokamak under construction in France, than previous estimates ...

Animal aggression depends on rank within social hierarchies

Animal aggression depends on rank within social hierarchies
2021-03-04
Humans and animals alike constantly size up one another. In the workplace, a new employee quickly learns which coworkers are the most respected -- and therefore hold more power. Big brothers boss around little brothers. In nature, a dominant male chimpanzee fights off would-be intruders. Even fish and octopi interact within social hierarchies. These pecking orders have been studied within the behavioral ecology world for almost 100 years. How individuals interact can affect access to food and mates -- even survival -- and insights into those behaviors can lead to better management of threatened and endangered populations. But few studies have explored what the animals ...

Cancer 'guardian' breaks bad with one switch

Cancer guardian breaks bad with one switch
2021-03-04
HOUSTON - (March 4, 2021) - A mutation that replaces a single amino acid in a potent tumor-suppressing protein turns it from saint to sinister. A new study by a coalition of Texas institutions shows why that is more damaging than previously known. The ubiquitous p53 protein in its natural state, sometimes called "the guardian of the genome," is a front-line protector against cancer. But the mutant form appears in 50% or more of human cancers and actively blocks cancer suppressors. Researchers led by Peter Vekilov at the University of Houston (UH) and Anatoly Kolomeisky at Rice University have discovered the same mutant protein can aggregate into clusters. These in turn nucleate the formation of amyloid fibrils, a ...

Recommended for you: Role, impact of tools behind automated product picks explored

Recommended for you: Role, impact of tools behind automated product picks explored
2021-03-04
As you scroll through Amazon looking for the perfect product, or flip through titles on Netflix searching for a movie to fit your mood, auto-generated recommendations can help you find exactly what you're looking for among extensive offerings. These recommender systems are used in retail, entertainment, social networking and more. In a recently published study, two researchers from The University of Texas at Dallas investigated the informative role of these systems and the economic impacts on competing sellers and consumers. "Recommender systems have become ubiquitous in e-commerce platforms and ...

Woolly mammoths may have shared the landscape with first humans in New England

Woolly mammoths may have shared the landscape with first humans in New England
2021-03-04
Woolly mammoths may have walked the landscape at the same time as the earliest humans in what is now New England, according to a Dartmouth study published in END ...

Thin explosive films provide snapshot of how detonations start

2021-03-04
ALBUQUERQUE, N.M. -- Using thin films -- no more than a few pieces of notebook paper thick -- of a common explosive chemical, researchers from Sandia National Laboratories studied how small-scale explosions start and grow. Sandia is the only lab in the U.S. that can make such detonatable thin films. These experiments advanced fundamental knowledge of detonations. The data were also used to improve a Sandia-developed computer-modeling program used by universities, private companies and the Department of Defense to simulate how large-scale detonations initiate and propagate. "It's neat, we're really pushing the limits on the ...

NASA's ICESat-2 satellite reveals shape, depth of Antarctic ice shelf fractures

NASAs ICESat-2 satellite reveals shape, depth of Antarctic ice shelf fractures
2021-03-04
When a block of ice the size of Houston, Texas, broke off from East Antarctica's Amery Ice Shelf in 2019, scientists had anticipated the calving event, but not exactly where it would happen. Now, satellite data can help scientists measure the depth and shape of ice shelf fractures to better predict when and where calving events will occur, according to researchers. Ice shelves make up nearly 75% of Antarctica's coastline and buttress -- or hold back -- the larger glaciers on land, said Shujie Wang, assistant professor of geography at Penn State. If the ice shelves were to collapse and Antarctica's glaciers fell ...

A world without cervical cancer: Preventive Medicine publishes special issue to further global efforts to eliminate deadly disease

A world without cervical cancer: <i>Preventive Medicine</i> publishes special issue to further global efforts to eliminate deadly disease
2021-03-04
Amsterdam, March 4, 2021 - Cervical cancer is a serious global health threat which kills more than 300,000 women every year. It's a disease that disproportionately affects women in low- and middle-income countries in equatorial Africa, Latin America and Southeast Asia, yet it is a preventable disease and decades of research have produced the tools needed to eliminate it. Recognizing this urgent public health issue, the editorial team of Preventive Medicine, led by Editor-in-Chief Dr. Eduardo Franco, Director, Division of Cancer Epidemiology and Chair, Gerald Bronfman Department of Oncology at McGill University, is publishing a special issue titled "From Science to Action to ...

Rapid new automated genomics screening stamps out crop disease

2021-03-04
Researchers at the Earlham Institute (EI) have created a new automated workflow using liquid handling robots to identify the genetic basis to prevent plant pathogens, which can be used on a much larger and rapid scale than current methods. The new EI Biofoundry automated workflow gives scientists an enhanced visual check of genetic mutations linked to the control of crop disease, speeding up analysis to a fraction of the time compared to current methods - from months to weeks - accelerating development of novel products for crop protection in the agricultural industry. Biosynthesis is the formation of chemical compounds by a living organism, ...

A COSMIC approach to nanoscale science

A COSMIC approach to nanoscale science
2021-03-04
COSMIC, a multipurpose X-ray instrument at Lawrence Berkeley National Laboratory's (Berkeley Lab's) Advanced Light Source (ALS), has made headway in the scientific community since its launch less than 2 years ago, with groundbreaking contributions in fields ranging from batteries to biominerals. COSMIC is the brightest X-ray beamline at the ALS, a synchrotron that generates intense light - from infrared to X-rays - and delivers it to dozens of beamlines to carry out a range of simultaneous science experiments. COSMIC's name is derived from coherent scattering and microscopy, which are two overarching X-ray techniques it is designed to carry out. Its capabilities include ...

LAST 30 PRESS RELEASES:

Sexual health symptoms may correlate with poor adherence to adjuvant endocrine therapy in Black women with breast cancer

Black patients with triple-negative breast cancer may be less likely to receive immunotherapy than white patients

Affordable care act may increase access to colon cancer care for underserved groups

UK study shows there is less stigma against LGBTQ people than you might think, but people with mental health problems continue to experience higher levels of stigma

Bringing lost proteins back home

Better than blood tests? Nanoparticle potential found for assessing kidneys

Texas A&M and partner USAging awarded 2024 Immunization Neighborhood Champion Award

UTEP establishes collaboration with DoD, NSA to help enhance U.S. semiconductor workforce

Study finds family members are most common perpetrators of infant and child homicides in the U.S.

Researchers secure funds to create a digital mental health tool for Spanish-speaking Latino families

UAB startup Endomimetics receives $2.8 million Small Business Innovation Research grant

Scientists turn to human skeletons to explore origins of horseback riding

UCF receives prestigious Keck Foundation Award to advance spintronics technology

Cleveland Clinic study shows bariatric surgery outperforms GLP-1 diabetes drugs for kidney protection

Study reveals large ocean heat storage efficiency during the last deglaciation

Fever drives enhanced activity, mitochondrial damage in immune cells

A two-dose schedule could make HIV vaccines more effective

Wastewater monitoring can detect foodborne illness, researchers find

Kowalski, Salonvaara receive ASHRAE Distinguished Service Awards

SkAI launched to further explore universe

SLU researchers identify sex-based differences in immune responses against tumors

Evolved in the lab, found in nature: uncovering hidden pH sensing abilities

Unlocking the potential of patient-derived organoids for personalized sarcoma treatment

New drug molecule could lead to new treatments for Parkinson’s disease in younger patients

Deforestation in the Amazon is driven more by domestic demand than by the export market

Demand-side actions could help construction sector deliver on net-zero targets

Research team discovers molecular mechanism for a bacterial infection

What role does a tailwind play in cycling’s ‘Everesting’?

Projections of extreme temperature–related deaths in the US

Wearable device–based intervention for promoting patient physical activity after lung cancer surgery

[Press-News.org] Original error
Retracing the history of the mutation that gave rise to cancer decades later