PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

'Lost' ocean nanoplastic might be getting trapped on coasts

2021-03-10
(Press-News.org) As plastic debris weathers in aquatic environments, it can shed tiny nanoplastics. Although scientists have a good understanding of how these particles form, they still don't have a good grasp of where all the fragments end up. Now, researchers reporting in ACS' Environmental Science & Technology have shown experimentally that most nanoplastics in estuarine waters can clump, forming larger clusters that either settle or stick to solid objects, instead of floating on into the ocean.

There is a huge discrepancy between the millions of tons of plastic waste entering rivers and streams and the amount researchers have found in the oceans. As large pieces of plastic break apart into successively smaller fragments on their transit to the sea, some eventually wear down to nano-sized particles. Previous studies have shown that these nanoplastics congregate in well-mixed, stagnant salty water. Yet, these results do not apply when the particles encounter dynamic changes in salt content, such as estuaries, where rivers carrying freshwater meet tidal saltwater. So, Hervé Tabuteau, Julien Gigault and colleagues wanted to perform laboratory experiments with micro-sized chambers mimicking the conditions measured in an estuary to show how nanoplastics interact and aggregate in this type of environment.

To determine how nanoplastics move in estuarine waters, the team developed a lab-on-a-chip device. They introduced crushed 400-nm-wide polystyrene beads and freshwater into one side of the device, while injecting saltwater through another inlet. At the opposite end of the 1.7-cm-long device, the researchers collected the output. The team tested different flow rates, replicating the salt gradient and water movement they measured in an estuary on the French Caribbean island of Guadeloupe. Nanoplastic aggregates up to 10-μm wide were detected within the zone of highest salt concentration in the flow chamber, regardless of how fast the water was moving. At the highest flow rate, only 12% of the nanoplastics were collected in the outlets; the remaining particles either clumped together and sank in the flow chamber or formed floating aggregates that stuck to the chamber's sides. The researchers say their results show estuaries and other coastal environments may filter out nanoplastics before they can enter the ocean.

INFORMATION:

The authors acknowledge funding from the French Agency for Research.

The abstract that accompanies this paper can be found here.

For more of the latest research news, register for our upcoming meeting, ACS Spring 2021. Journalists and public information officers are encouraged to apply for complimentary press registration by emailing us at newsroom@acs.org.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.   To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.   Follow us: Twitter | Facebook



ELSE PRESS RELEASES FROM THIS DATE:

Study of mosquito protein could lead to treatments against life-threatening viruses

Study of mosquito protein could lead to treatments against life-threatening viruses
2021-03-10
The mosquito protein AEG12 strongly inhibits the family of viruses that cause yellow fever, dengue, West Nile, and Zika and weakly inhibits coronaviruses, according to scientists at the National Institutes of Health (NIH) and their collaborators. The researchers found that AEG12 works by destabilizing the viral envelope, breaking its protective covering. Although the protein does not affect viruses that do not have an envelope, such as those that cause pink eye and bladder infections, the findings could lead to therapeutics against viruses that affect millions of people around the world. The research ...

The quest for sustainable leather alternatives

2021-03-10
Throughout history, leather has been a popular material for clothes and many other goods. However, the tanning process and use of livestock mean that it has a large environmental footprint, leading consumers and manufacturers alike to seek out alternatives. An article in Chemical & Engineering News (C&EN), the weekly newsmagazine of the American Chemical Society, details how sustainable materials are giving traditional leather a run for its money. Traditional leather goods are known for their durability, flexibility and attractive finish, with a global market worth billions, writes ...

University of Minnesota scientists discover attacking fungi that show promise against emerald ash borer

University of Minnesota scientists discover attacking fungi that show promise against emerald ash borer
2021-03-10
Since its introduction, the emerald ash borer (EAB) has become the most devastating invasive forest insect in the United States, killing hundreds of millions of ash trees at a cost of hundreds of millions of dollars. Now, new research from the University of Minnesota's Minnesota Invasive Terrestrial Plants and Pests Center (MITPPC) shows a possible path forward in controlling the invasive pest that threatens Minnesota's nearly one billion ash trees. In a recent study published in Fungal Biology, MITPPC researchers identified various fungi living in EAB-infested trees -- a critical ...

Producing highly efficient LEDs based on 2D perovskite films

Producing highly efficient LEDs based on 2D perovskite films
2021-03-10
Energy-efficient light-emitting diodes (LEDs) have been used in our everyday life for many decades. But the quest for better LEDs, offering both lower costs and brighter colours, has recently drawn scientists to a material called perovskite. A recent joint-research project co-led by the scientist from City University of Hong Kong (CityU) has now developed a 2D perovskite material for the most efficient LEDs. From household lighting to mobile phone displays, from pinpoint lighting needed for endoscopy procedures to light source to grow vegetables in Space, LEDs ...

Hip fracture outcomes worse during busy periods

2021-03-10
Hip fractures are serious, especially for the elderly. The operation can be a great strain, and 13 per cent of patients over the age of 70 do not survive 60 days after the fracture. Their chance of survival may depend on how busy the surgeons are with other emergency procedures. "When the operating room is busy, 20 per cent more of the patients die within 60 days after the operation," says Professor Johan Håkon Bjørngaard at the Norwegian University of Science and Technology's (NTNU) Department of Public Health and Nursing. Surgeons can get especially busy during periods when the patient demand for surgery is high. In busy periods, hip fracture patients ...

Inspired by bone, new adaptive material strengthens from vibration

2021-03-10
Bone is not just a fixed material - it's a dynamic set of structures that can adapt their mass and strength based on the loads they must support. Developing that sort of adaptive material has long been the dream of scientists. Now for the first time, scientists at the Pritzker School of Molecular Engineering (PME) at the University of Chicago have developed a gel material that strengthens when exposed to vibration. Not only were scientists able to make the material 66 times stronger through vibrations, they were also able to strengthen only the areas exposed to movement. That sort of specificity could lead to new adhesives and ...

An electrically charged glass display smoothly transitions between a spectrum of colors

2021-03-10
Scientists have developed a see-through glass display with a high white light contrast ratio that smoothly transitions between a broad spectrum of colors when electrically charged. The technology, from researchers at Jilin University in Changchun, China, overcomes limitations of existing electrochromic devices by harnessing interactions between metal ions and ligands, opening the door for numerous future applications. The work appears March 10 in the journal Chem. "We believe that the method behind this see-through, non-emissive display may accelerate the development of transparent, eye-friendly displays with improved readability for bright working conditions," says Yu-Mo Zhang, an associate professor of chemistry at Jilin ...

Bitcoin price boom 'locking in' vast energy consumption

2021-03-10
The cryptocurrency market has been abuzz as Bitcoin gains popularity with investors, reaching an all-time high of over $58,000 apiece in February. In a commentary published March 10 in the journal Joule, financial economist Alex de Vries quantifies how the surging Bitcoin price is driving increasing energy consumption, exacerbating the global shortage of chips, and even threatening international safety. Theoretically, any computer with access to the internet and electricity can "mine" Bitcoin, a process to receive cryptocurrency by solving sophisticated mathematical equations. It is estimated that all miners combined make over 150 quintillion--that is 18 zeros following 150--attempts every second to solve the equation, according to numbers from January 11, 2021. Computational power ...

NIH researchers develop guidelines for reporting polygenic risk scores

NIH researchers develop guidelines for reporting polygenic risk scores
2021-03-10
Scientists and healthcare providers are beginning to use a new approach for assessing a person's inherited risk for diseases like Type 2 diabetes, coronary heart disease and breast cancer, which involves calculating a END ...

Microbes may hold the key for treating neurological disorders

2021-03-10
When we think about the causes of neurological disorders and how to treat them, we think about targeting the brain. But is this the best or only way? Maybe not. New research by scientists at Baylor College of Medicine suggests that microbes in the gut may contribute to certain symptoms associated with complex neurological disorders. The findings, published in the journal Cell, also suggest that microbe-inspired therapies may one day help to treat them. Dr. Mauro Costa-Mattioli, professor and Cullen Foundation Endowed Chair in neuroscience and director of the Memory and Brain Research Center at Baylor, discovered ...

LAST 30 PRESS RELEASES:

New insights into tRNA-derived small RNAs offer hope for digestive tract disease diagnosis and treatment

Emotive marketing for sustainable consumption?

Prostate cancer is not a death knell, study shows

Unveiling the role of tumor-infiltrating immune cells in endometrial carcinoma

Traditional Chinese medicine unlocks new potential in treating diseases through ferroptosis regulation

MSU study pinpoints the impact of prenatal stress across 27 weeks of pregnancy

Biochemist’s impact on science and students honored

ELF4: A key transcription factor shaping immunity and cancer progression

Updated chronic kidney disease management guidelines recommend SGLT2 inhibitors regardless of diabetes or kidney disease type

New research explores how AI can build trust in knowledge work

Compound found in common herbs inspires potential anti-inflammatory drug for Alzheimer’s disease

Inhaled COVID vaccine begins recruitment for phase-2 human trials

What’s in a label? It’s different for boys vs. girls, new study of parents finds

Genes combined with immune response to Epstein-Barr virus increase MS risk

Proximity and prejudice: Gay discrimination in the gig economy

New paper suggests cold temperatures trigger shapeshifting proteins

Reproductive justice–driven pregnancy interventions can improve mental health

Intranasal herpes infection may produce neurobehavioral symptoms, UIC study finds

Developing treatment strategies for an understudied bladder disease

Investigating how decision-making and behavioral control develop

Rutgers researchers revive decades-old pregnancy cohort with modern scientific potential

Rising CO2 likely to speed decrease in ‘space sustainability’ 

Study: Climate change will reduce the number of satellites that can safely orbit in space

Mysterious phenomenon at center of galaxy could reveal new kind of dark matter

Unlocking the secrets of phase transitions in quantum hardware

Deep reinforcement learning optimizes distributed manufacturing scheduling

AACR announces Fellows of the AACR Academy Class of 2025 and new AACR Academy President

TTUHSC’s Graduate School of Biomedical Sciences hosts 37th Student Research Week

New insights into plant growth

Female sex hormone protects against opioid misuse, rat study finds

[Press-News.org] 'Lost' ocean nanoplastic might be getting trapped on coasts