PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A monumental particle accelerator in the Cygnus Cocoon

A monumental particle accelerator in the Cygnus Cocoon
2021-03-11
(Press-News.org) At the heart of Cygnus, one of the most beautiful constellations of the summer sky, beats a source of high-energy cosmic ray particles: the Cygnus Cocoon. An international group of scientists at the HAWC observatory has gathered evidence that this vast astronomical structure is the most powerful of our galaxy's natural particle accelerators known of up to now.

This spectacular discovery is the result of the work of scientists from the international High-Altitude Water Cherenkov (HAWC) gamma-ray observatory. Located on the slopes of the Mexican Sierra Negra volcano, the observatory records high-energy particles and photons flowing from the abyss of space. In the sky of the Northern Hemisphere, their brightest source is the region known as the Cygnus Cocoon. At the HAWC, it was established that photons with energies even several dozen times greater than those recorded earlier by the Fermi-LAT and ARGO detectors arrive from the Cocoon. This fact suggests that the Cygnus Cocoon is the most powerful of the hitherto known particle accelerators in the Milky Way. The results of the research, in which scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow played an important role, are presented in the prestigious journal Nature Astronomy.

"The discovery made thanks to the HAWC observatory is an important element of a scientific puzzle that has been going on for over a hundred years, the aim of which is to decipher the nature of cosmic rays, especially when speaking of particles with the highest energies occurring in our galaxy," says Dr. Sabrina Casanova (IFJ PAN), initiator of the latest data analysis from the Cygnus Cocoon region and its significant co-author.

The Cygnus Cocoon, a vast astronomical structure about 180 light years across, lies 4.6 thousand light years from the Sun. In our sky, we can find it almost exactly in the centre of the Cygnus constellation where it occupies an area of angular width similar to the four discs of the Moon. It is a region of intense formation of massive (and consequently short-lived) stars, with two young star clusters Cygnus OB2 and NGC 6910.

"The HAWC detector has greater sensitivity and angular resolution than previous devices of this type. With its use, during 1,343 days of observation we recorded photons of gamma rays with energies up to one hundred teraelectronvolts, coming from the direction of the Cygnus OB2 cluster. What could have been the source of such high-energy radiation?" wonders Dr. Casanova.

What emerges from the latest analysis of gamma radiation reaching the Earth from the Cygnus Cocoon is an interesting picture of phenomena of complex, multi-stage nature. High-energy cosmic rays are usually expected to come from supernova remnants, including pulsars. However, in supernova remnants protons or electrons do not have enough time to accelerate to a kinetic energy reaching several hundred teraelectronvolts. But then, inside a young cluster of massive stars, the turbulences of powerful stellar winds interacting with each other help to confine the particles for millions of years. Some of these particles have the chance to gain energies reaching petaelectronvolts.

"The situation is very complicated," notes Dr. Casanova, and clarifies: "Some particles are expected to gain really enormous energies inside these associations of massive stars thanks to the long confinement time, comparable to the million-year lifetime of the associations themselves. But the higher the energy of the particles, the shorter the confinement time. We expect that the highest energy particles escape the cluster before they emit the gamma photons we can observe. The question is: where is the maximum acceleration energy?"

The key question is the nature of the particles responsible for the emission of the high-energy photons that were recorded at the HAWC observatory. If the source of the photons were electrons, their energies would have to be several times greater than the energy of photons. However, if the source were protons, their energies would have to be as high as a petaelectronvolt. This value is one hundred times greater than the energy of proton collisions inside the LHC accelerator.

"Our analysis does not provide a clear conclusion regarding the origin of photons with energies reaching 100 TeV. It does, however, point to a clear favourite - protons with extreme energies, accelerated in collisions of stellar winds and then emitting gamma photons when colliding with interstellar material," says Dr Casanova.

If future observations confirm the present interpretation, the Cygnus OB2 star cluster in the interior of the Cygnus Cocoon would be the most powerful of all our galaxy's accelerators identified so far.

The Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN) is currently one of the largest research institutes of the Polish Academy of Sciences. A wide range of research carried out at IFJ PAN covers basic and applied studies, from particle physics and astrophysics, through hadron physics, high-, medium-, and low-energy nuclear physics, condensed matter physics (including materials engineering), to various applications of nuclear physics in interdisciplinary research, covering medical physics, dosimetry, radiation and environmental biology, environmental protection, and other related disciplines. The average yearly publication output of IFJ PAN includes over 600 scientific papers in high-impact international journals. Each year the Institute hosts about 20 international and national scientific conferences. One of the most important facilities of the Institute is the Cyclotron Centre Bronowice (CCB), which is an infrastructure unique in Central Europe, serving as a clinical and research centre in the field of medical and nuclear physics. In addition, IFJ PAN runs four accredited research and measurement laboratories. IFJ PAN is a member of the Marian Smoluchowski Kraków Research Consortium: "Matter-Energy-Future", which in the years 2012-2017 enjoyed the status of the Leading National Research Centre (KNOW) in physics. In 2017, the European Commission granted the Institute the HR Excellence in Research award. The Institute holds A+ Category (the highest scientific category in Poland) in the field of sciences and engineering.

INFORMATION:

CONTACTS:

Dr. Sabrina Casanova
Institute of Nuclear Physics, Polish Academy of Sciences
tel: +48 12 6628274
email: sabrina.casanova@ifj.edu.pl

SCIENTIFIC PUBLICATIONS:

"HAWC observations of the acceleration of very-high energy cosmic rays in the Cygnus Cocoon"
The HAWC Collaboration
Nature Astronomy, 2021
DOI: https://doi.org/10.1038/s41550-021-01318-y

LINKS:

http://www.ifj.edu.pl/
The website of the Institute of Nuclear Physics, Polish Academy of Sciences.

http://press.ifj.edu.pl/
Press releases of the Institute of Nuclear Physics, Polish Academy of Sciences.

IMAGES:

IFJ210311b_fot01s.jpg
HR: http://press.ifj.edu.pl/news/2021/03/11/IFJ210311b_fot01.jpg
The Cygnus Cocoon region with the source of photons up to 100 TeV, coinciding with the young Cygnus OB2 cluster of massive stars. (Source: IFJ PAN / HAWC)

IFJ210311b_fot02s.jpg
HR: http://press.ifj.edu.pl/news/2021/03/11/IFJ210311b_fot02.jpg
Cygnus X, one of the brightest and closest star forming region in the Galaxy (marked in red), is at the centre of the Cygnus Cocoon, a vast astronomical structure that covers an area of Earth's sky an angular width of four lunar discs. (Source: IFJ PAN / Stellarium)

IFJ210311b_fot03s.jpg
HR: http://press.ifj.edu.pl/news/2021/03/11/IFJ210311b_fot03.jpg
The High-Altitude Water Cherenkov (HAWC) gamma-ray observatory, located on the slopes of the Mexican Sierra Negra volcano. (Source: HAWC Observatory)


[Attachments] See images for this press release:
A monumental particle accelerator in the Cygnus Cocoon

ELSE PRESS RELEASES FROM THIS DATE:

UH geologists discover powerful 'river of rocks' below Caribbean

2021-03-11
Geologists have long thought tectonic plates move because they are pulled by the weight of their sinking portions and that an underlying, hot, softer layer called asthenosphere serves as a passive lubricant. But a team of geologists at the University of Houston has found that layer is actually flowing vigorously, moving fast enough to drive plate motions. In their study published in Nature Communications, researchers from the UH College of Natural Sciences and Mathematics looked at minute changes in satellite-detected gravitational pull within the Caribbean and at mantle tomography images - similar to a CAT Scan - of the asthenosphere under the Caribbean. They found ...

Lithium chloride promotes recovery of radiation-induced oral mucositis and dysgeusia

2021-03-11
Alexandria, Va., USA -- Oral mucositis and taste dysfunction (dysgeusia) occurs in nearly all patients receiving head and neck radiotherapy and tremendously affects the quality of life and treatment outcome. The study "LiCl Promotes Recovery of Radiation-Induced Oral Mucositis and Dysgeusia" published in the Journal of Dental Research (JDR), investigated the hypothesis that lithium chloride (LiCl) can promote the restoration of oral mucosa integrity and taste function after radiation. LiCl is a potent activator of a key cell signaling pathway called Wnt/β-catenin that is critical for the development, regeneration and function of many tissue types. ...

Read to succeed -- in math; study shows how reading skill shapes more than just reading

2021-03-11
BUFFALO, N.Y. - A University at Buffalo researcher's recent work on dyslexia has unexpectedly produced a startling discovery which clearly demonstrates how the cooperative areas of the brain responsible for reading skill are also at work during apparently unrelated activities, such as multiplication. Though the division between literacy and math is commonly reflected in the division between the arts and sciences, the findings suggest that reading, writing and arithmetic, the foundational skills informally identified as the three Rs, might actually overlap in ways not previously imagined, let alone experimentally validated. "These findings floored me," said Christopher McNorgan, PhD, the paper's author and an assistant professor in UB's Department of Psychology. "They elevate the ...

New study provides detailed view of how hepatitis B virus establishes chronic infection

New study provides detailed view of how hepatitis B virus establishes chronic infection
2021-03-11
Researchers at Princeton have determined how five cellular proteins contribute to an essential step in the life cycle of hepatitis B virus (HBV). The article describing these findings appeared March 11, 2021 in the journal Nature Communications. Viruses have been with us, shaping our lives, societies and economies for millennia. While some viruses rapidly explode onto the world stage, others smolder in our communities for decades, shattering lives but making few headlines. Hepatitis B virus hasn't caused any nationwide lockdowns or stock market crashes because it is slow to spread from person to person and is rarely immediately fatal. It is nonetheless incredibly damaging because it can establish lifelong chronic infection ...

Breakthrough lays groundwork for future quantum networks

Breakthrough lays groundwork for future quantum networks
2021-03-11
RESEARCH TRIANGLE PARK, N.C. -- New Army-funded research could help lay the groundwork for future quantum communication networks and large-scale quantum computers. Researchers sent entangled qubit states through a communication cable linking one quantum network node to a second node. Scientists at the Pritzker School of Molecular Engineering at the University of Chicago, funded and managed by the U.S. Army Combat Capability Development, known as DEVCOM, Army Research Laboratory's Center for Distributed Quantum Information, also amplified an entangled state via the same cable first by using the cable to entangle two qubits in each of two nodes, then entangling these qubits further with other qubits in the nodes. The peer-reviewed journal ...

Discovery of new protein with an important role in atherosclerosis

2021-03-11
Atherosclerosis is the underlying condition that causes heart attacks and strokes. Researchers at Radboudumc in the Netherlands have discovered a protein that appears to play an important role in atherosclerosis. The protein is called Prosaposin, and its role in atherosclerosis was sofar unknown. "We identified Prosaposin as a new potential target for the Science Translational Medicine. Atherosclerosis is caused by cholesterol that builds up in the vessel wall and triggers chronic inflammation. It has been well established that cholesterol lowering drugs help to treat atherosclerosis. Recent research has shown that inhibiting inflammation can also help to prevent heart attacks and ...

Immunogenicity of Ad26.COV2.S vaccine for COVID-19

2021-03-11
What The Study Did: In this phase 1 study, a single immunization with Ad26.COV2.S (Janssen/Johnson & Johnson) vaccine induced rapid binding and neutralization antibody responses as well as cellular immune responses. Two phase 3 clinical trials are currently underway to determine the efficacy of the Ad26.COV2.S vaccine. Authors: Dan H. Barouch, M.D., Ph.D., of Beth Israel Deaconess Medical Center in Boston, is the corresponding author. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jama.2021.3645) Editor's Note: Please see the article ...

Climate change may not expand drylands

2021-03-11
Does a warmer climate mean more dry land? For years, researchers projected that drylands -- including deserts, savannas and shrublands -- will expand as the planet warms, but new research from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) challenges those prevailing views. Previous studies used atmospheric information, including rainfall and temperature, to make projections about future land conditions. The real picture is more complicated than that, said Kaighin McColl, Assistant Professor of Earth and Planetary Sciences and of Environmental Science and Engineering at SEAS and senior author ...

Pandemic emphasizes need for digital literacy education

Pandemic emphasizes need for digital literacy education
2021-03-11
AMES, Iowa - Parents would never give their children the keys to the car without supervised training and driver's education. An Iowa State University researcher says parents and educators need to take a similar approach before handing children a keyboard to access the digital world. ISU psychology professor Douglas Gentile worked with the DQ (Digital Intelligence) Institute, an international think tank, to design a framework for digital literacy education. In a commentary, published by the journal Nature Human Behaviour, Gentile and his colleagues outlined how the COVID-19 pandemic has accelerated ...

After cracking the "sum of cubes" puzzle for 42, researchers discover a new solution for 3

2021-03-11
What do you do after solving the answer to life, the universe, and everything? If you're mathematicians Drew Sutherland and Andy Booker, you go for the harder problem. In 2019, Booker, at the University of Bristol, and Sutherland, principal research scientist at MIT, were the first to find the answer to 42. The number has pop culture significance as the fictional answer to "the ultimate question of life, the universe, and everything," as Douglas Adams famously penned in his novel "The Hitchhiker's Guide to the Galaxy." The question that begets 42, at least in the ...

LAST 30 PRESS RELEASES:

Populations overheat as major cities fail canopy goals: new research

By exerting “crowd control” over mouse cells, scientists make progress towards engineering tissues

First American Gastroenterological Association living guideline for moderate-to-severe ulcerative colitis

Labeling cell particles with barcodes

Groundwater pumping drives rapid sinking in California

Neuroscientists discover how the brain slows anxious breathing

New ion speed record holds potential for faster battery charging, biosensing

Haut.AI explores the potential of AI-enhanced fluorescence photography for non-invasive skin diagnostics

7-year study reveals plastic fragments from all over the globe are rising rapidly in the North Pacific Garbage Patch 

New theory reveals the shape of a single photon 

We could soon use AI to detect brain tumors

TAMEST recognizes Lyda Hill and Lyda Hill Philanthropies with Kay Bailey Hutchison Distinguished Service Award

Establishment of an immortalized red river hog blood-derived macrophage cell line

Neural networks: You might not need to buy every ticket to win the lottery

Healthy New Town: Revitalizing neighborhoods in the wake of aging populations

High exposure to everyday chemicals linked to asthma risk in children

How can brands address growing consumer scepticism?

New paradigm of quantum information technology revealed through light-matter interaction!

MSU researchers find trees acclimate to changing temperatures

World's first visual grading system developed to combat microplastic fashion pollution

Teenage truancy rates rise in English-speaking countries

Cholesterol is not the only lipid involved in trans fat-driven cardiovascular disease

Study: How can low-dose ketamine, a ‘lifesaving’ drug for major depression, alleviate symptoms within hours? UB research reveals how

New nasal vaccine shows promise in curbing whooping cough spread

Smarter blood tests from MSU researchers deliver faster diagnoses, improved outcomes

Q&A: A new medical AI model can help spot systemic disease by looking at a range of image types

For low-risk pregnancies, planned home births just as safe as birth center births, study shows

Leaner large language models could enable efficient local use on phones and laptops

‘Map of Life’ team wins $2 million prize for innovative rainforest tracking

Rise in pancreatic cancer cases among young adults may be overdiagnosis

[Press-News.org] A monumental particle accelerator in the Cygnus Cocoon