PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Missing baryons found in far-out reaches of galactic halos

Berkeley Lab physicists play key role in studies that solve a cosmological mystery

Missing baryons found in far-out reaches of galactic halos
2021-03-17
(Press-News.org) Researchers have channeled the universe's earliest light - a relic of the universe's formation known as the cosmic microwave background (CMB) - to solve a missing-matter mystery and learn new things about galaxy formation. Their work could also help us to better understand dark energy and test Einstein's theory of general relativity by providing new details about the rate at which galaxies are moving toward us or away from us.

Invisible dark matter and dark energy account for about 95% of the universe's total mass and energy, and the majority of the 5% that is considered ordinary matter is also largely unseen, such as the gases at the outskirts of galaxies that comprise their so-called halos.

Most of this ordinary matter is made up of neutrons and protons - particles called baryons that exist in the nuclei of atoms like hydrogen and helium. Only about 10% of baryonic matter is in the form of stars, and most of the rest inhabits the space between galaxies in strands of hot, spread-out matter known as the warm-hot intergalactic medium, or WHIM.

Because baryons are so spread out in space, it has been difficult for scientists to get a clear picture of their location and density around galaxies. Because of this incomplete picture of where ordinary matter resides, most of the universe's baryons can be considered as "missing."

Now, an international team of researchers, with key contributions from physicists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and Cornell University, has mapped the location of these missing baryons by providing the best measurements, to date, of their location and density around groups of galaxies.

It turns out the baryons are in galaxy halos after all, and that these halos extend much farther than popular models had predicted. While most of an individual galaxy's stars are typically contained within a region that is about 100,000 light-years from the galaxy's center, these measurements show that for a given group of galaxies, the most distant baryons can extend about 6 million light-years from their center.

Paradoxically, this missing matter is even more challenging to map out than dark matter, which we can observe indirectly through its gravitational effects on normal matter. Dark matter is the unknown stuff that makes up about 27% of the universe; and dark energy, which is driving matter in the universe apart at an accelerating rate, makes up about 68% of the universe.

"Only a few percent of ordinary matter is in the form of stars. Most of it is in the form of gas that is generally too faint, too diffuse to be able to detect," said Emmanuel Schaan, Chamberlain Postdoctoral Fellow in Berkeley Lab's Physics Division and lead author for one of two papers (https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.063513) about the missing baryons, published March 15 in the journal Physical Review D (view the other paper at this link: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.063514).

The researchers made use of a process known as the Sunyaev-Zel'dovich effect that explains how CMB electrons get a boost in energy via a scattering process as they interact with hot gases surrounding galaxy clusters.

"This is a great opportunity to look beyond galaxy positions and at galaxy velocities," said Simone Ferraro, a Divisional Fellow in Berkeley Lab's Physics Division who participated in both studies. "Our measurements contain a lot of cosmological information about how fast these galaxies move. It will complement measurements that other observatories make, and make them even more powerful," he said.

A team of researchers at Cornell University, comprised of research associate Stefania Amodeo, assistant professor. Professor Nicholas Battaglia, and graduate student Emily Moser, led the modeling and the interpretation of the measurements, and explored their consequences for weak gravitational lensing and galaxy formation.

The computer algorithms that the researchers developed should prove useful in analyzing "weak lensing" data from future experiments with high precision. Lensing phenomena occur when massive objects such as galaxies and galaxy clusters are roughly aligned in a particular line of site so that gravitational distortions actually bend and distort the light from the more distant object.

Weak lensing is one of the main techniques that scientists use to understand the origin and evolution of the universe, including the study of dark matter and dark energy. Learning the location and distribution of baryonic matter brings this data within reach.

"These measurements have profound implications for weak lensing, and we expect this technique to be very effective at calibrating future weak-lensing surveys," Ferraro said.

Schaan noted, "We also get information that's relevant for galaxy formation."

In the latest studies, researchers relied on a galaxies dataset from the ground-based Baryon Oscillation Spectroscopic Survey (BOSS) in New Mexico, and CMB data from the Atacama Cosmology Telescope (ACT) in Chile and the European Space Agency's space-based Planck telescope. Berkeley Lab played a leading role in the BOSS mapping effort, and developed the computational architectures necessary for Planck data-processing at NERSC.

The algorithms they created benefit from analysis using the Cori supercomputer at Berkeley Lab's DOE-funded National Energy Research Scientific Computing Center (NERSC). The algorithms counted electrons, allowing them to ignore the chemical composition of the gases.

"It's like a watermark on a bank note," Schaan explained. "If you put it in front of a backlight then the watermark appears as a shadow. For us the backlight is the cosmic microwave background. It serves to illuminate the gas from behind, so we can see the shadow as the CMB light travels through that gas."

Ferraro said, "It's the first really high-significance measurement that really pins down where the gas was."

The new picture of galaxy halos provided by the "ThumbStack" software that researchers created: massive, fuzzy spherical areas extending far beyond the starlit regions. This software is effective at mapping those halos even for groups of galaxies that have low-mass halos and for those that are moving away from us very quickly (known as "high-redshift" galaxies).

New experiments that should benefit from the halo-mapping tool include the Dark Energy Spectroscopic Instrument, the Vera Rubin Observatory, the Nancy Grace Roman Space Telescope, and the Euclid space telescope.

NERSC is a DOE Office of Science user facility.

INFORMATION:

In addition to the lead authors from Berkeley Lab, UCB and Cornell, researchers from 41 institutions in seven countries participated in the new studies. The work was supported in part by the U.S. Department of Energy Office of Science, the National Science Foundation, Princeton University, the University of Pennsylvania, and the Canada Foundation for Innovation. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions.

More

"Ancient light illuminates matter that fuels galaxy formation," Cornell Chronicle, Cornell University, March 15, 2021

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 14 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab's facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.


[Attachments] See images for this press release:
Missing baryons found in far-out reaches of galactic halos

ELSE PRESS RELEASES FROM THIS DATE:

Arctic was once lush and green, could be again, new research shows

Arctic was once lush and green, could be again, new research shows
2021-03-17
Imagine not a white, but a green Arctic, with woody shrubs as far north as the Canadian coast of the Arctic Ocean. This is what the northernmost region of North America looked like about 125,000 years ago, during the last interglacial period, finds new research from the University of Colorado Boulder. Researchers analyzed plant DNA more than 100,000 years old retrieved from lake sediment in the Arctic (the oldest DNA in lake sediment analyzed in a publication to date) and found evidence of a shrub native to northern Canadian ecosystems 250 miles (400 km) farther north than its current range. As the Arctic warms much ...

Text me about cervical cancer

Text me about cervical cancer
2021-03-17
An estimated 14,480 new cases of invasive cervical cancer will be diagnosed in the United States this year, according to the American Cancer Society. Cases that could be prevented or cured with better education from screening to treatment based on improved provider-patient communication, says a Michigan State University researcher. The issue is particularly acute for Black women, said Sabrina Ford, an associate professor in the Department of Obstetrics, Gynecology and Reproductive Biology within MSU's College of Human Medicine. Ford's research was published ...

Mitigating impact of artificial light at night in tropical forests

Mitigating impact of  artificial light at night in tropical forests
2021-03-17
Artificial light at night (ALAN) is a major factor in global insect decline. In a paper published today in Insect Conservation and Diversity, Smithsonian Conservation Biology Institute (SCBI) scientists and partners found that using amber-colored filters to remove the blue spectra of light from "warm white" LED (light-emitting diode) lamps drastically reduces insect attraction to nocturnal lighting in a tropical forest. This is the first study to validate quantitative predictions of how lamp color affects insect attraction and provide clear recommendations to mitigate the negative impacts of ALAN on wildlife in rainforest ecosystems. "While ...

Modelling speed-ups in nutrient-seeking bacteria

2021-03-17
Many bacteria swim towards nutrients by rotating the helix-shaped flagella attached to their bodies. As they move, the cells can either 'run' in a straight line, or 'tumble' by varying the rotational directions of their flagella, causing their paths to randomly change course. Through a process named 'chemotaxis,' bacteria can decrease their rate of tumbling at higher concentrations of nutrients, while maintaining their swimming speeds. In more hospitable environments like the gut, this helps them to seek out nutrients more easily. However, in more nutrient-sparse ...

'Time lost is brain lost'

Time lost is brain lost
2021-03-17
A new study involving UCLA researchers finds that mobile stroke units (MSUs) - state-of-the-art ambulances built to provide stroke patients with emergency neurological diagnosis and treatment prior to hospital arrival -- improve patient outcomes and lessen the chance for disability by delivering care faster than standard stroke care. The UCLA Mobile Stroke Unit serves as a shared regional resource of LA County EMS Provider Agencies, taking patients to 15 different stroke center hospitals within 3 regions in Los Angeles County. The MSU carries a CT scanner that can directly image the brain and blood vessels in the field. UCLA was one of seven national mobile stroke unit programs to participate in the clinical trial, which was presented March 17 at the ...

Losing rivers

2021-03-17
Water is an ephemeral thing. It can emerge from an isolated spring, as if by magic, to birth a babbling brook. It can also course through a mighty river, seeping into the soil until all that remains downstream is a shady arroyo, the nearby trees offering the only hint of where the water has gone. The interplay between surface water and groundwater is often overlooked by those who use this vital resource due to the difficulty of studying it. Assistant professors Scott Jasechko and Debra Perrone, of UC Santa Barbara, and their colleagues leveraged their enormous ...

Aspirin use may decrease ventilation, ICU admission and death in COVID-19 patients

2021-03-17
George Washington University researchers found low dose aspirin may reduce the need for mechanical ventilation, ICU admission and in-hospital mortality in hospitalized COVID-19 patients. Final results indicating the lung protective effects of aspirin were published today in Anesthesia & Analgesia. "As we learned about the connection between blood clots and COVID-19, we knew that aspirin - used to prevent stroke and heart attack - could be important for COVID-19 patients," Jonathan Chow, MD, assistant professor of anesthesiology and critical care medicine and director of the Critical Care Anesthesiology ...

Study finds plants would grow well in solar cell greenhouses

2021-03-17
A recent study shows that lettuce can be grown in greenhouses that filter out wavelengths of light used to generate solar power, demonstrating the feasibility of using see-through solar panels in greenhouses to generate electricity. "We were a little surprised - there was no real reduction in plant growth or health," says Heike Sederoff, co-corresponding author of the study and a professor of plant biology at North Carolina State University. "It means the idea of integrating transparent solar cells into greenhouses can be done." Because plants do not use all of the wavelengths of light for photosynthesis, researchers have explored the idea of creating semi-transparent organic solar ...

Scientists create model of an early human embryo from skin cells

Scientists create model of an early human embryo from skin cells
2021-03-17
AUSTRALIAN - LED INTERNATIONAL RESEARCH TEAM GENERATES THE FIRST MODEL OF EARLY HUMAN EMBRYOS FROM SKIN CELLS In a discovery that will revolutionize research into the causes of early miscarriage, infertility and the study of early human development - an international team of scientists led by Monash University in Melbourne, Australia has generated a model of a human embryo from skin cells. The team, led by Professor Jose Polo, has successfully reprogrammed these fibroblasts or skin cells into a 3-dimensional cellular structure that is morphologically and molecularly similar to human blastocysts. Called iBlastoids, these can be used to model the biology of ...

Racial/ethnic disparities in very preterm, preterm birth before, during COVID-19 pandemic

2021-03-17
What The Study Did: Racial and ethnic disparities in very preterm birth and preterm birth among 8,026 women were similar during the first wave of the COVID-19 pandemic in New York City compared with the same period the year prior in this observational study. Authors: Teresa Janevic, Ph.D., M.P.H., of the Icahn School of Medicine at Mount Sinai in New York, is the corresponding author. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jamanetworkopen.2021.1816) Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article ...

LAST 30 PRESS RELEASES:

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

Stress makes mice’s memories less specific

Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage

Resilience index needed to keep us within planet’s ‘safe operating space’

How stress is fundamentally changing our memories

Time in nature benefits children with mental health difficulties: study

In vitro model enables study of age-specific responses to COVID mRNA vaccines

Sitting too long can harm heart health, even for active people

International cancer organizations present collaborative work during oncology event in China

One or many? Exploring the population groups of the largest animal on Earth

ETRI-F&U Credit Information Co., Ltd., opens a new path for AI-based professional consultation

New evidence links gut microbiome to chronic disease outcomes

Family Heart Foundation appoints Dr. Seth Baum as Chairman of the Board of Directors

New route to ‘quantum spin liquid’ materials discovered for first time

Chang’e-6 basalts offer insights on lunar farside volcanism

Chang’e-6 lunar samples reveal 2.83-billion-year-old basalt with depleted mantle source

Zinc deficiency promotes Acinetobacter lung infection: study

How optogenetics can put the brakes on epilepsy seizures

Children exposed to antiseizure meds during pregnancy face neurodevelopmental risks, Drexel study finds

Adding immunotherapy to neoadjuvant chemoradiation may improve outcomes in esophageal cancer

Scientists transform blood into regenerative materials, paving the way for personalized, blood-based, 3D-printed implants

Maarja Öpik to take up the position of New Phytologist Editor-in-Chief from January 2025

Mountain lions coexist with outdoor recreationists by taking the night shift

Students who use dating apps take more risks with their sexual health

Breakthrough idea for CCU technology commercialization from 'carbon cycle of the earth'

Keck Hospital of USC earns an ‘A’ Hospital Safety Grade from The Leapfrog Group

Depression research pioneer Dr. Philip Gold maps disease's full-body impact

Rapid growth of global wildland-urban interface associated with wildfire risk, study shows

Generation of rat offspring from ovarian oocytes by Cross-species transplantation

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

[Press-News.org] Missing baryons found in far-out reaches of galactic halos
Berkeley Lab physicists play key role in studies that solve a cosmological mystery