(Press-News.org) Researchers from the Department of Orthopedics of Tongji Hospital at Tongji University in Shanghai have successfully used a nanobiomaterial called layered double hydroxide (LDH) to inhibit the inflammatory environment surrounding spinal cord injuries in mice, accelerating regeneration of neurons and reconstruction of the neural circuit in the spine. The researchers were also able to identify the underlying genetic mechanism by which LDH works. This understanding should allow further modification of the therapy which, in combination with other elements, could finally produce a comprehensive, clinically applicable system for spinal cord injury relief in humans.
The research appears in the American Chemical Society journal ACS Nano on February 2.
There is no effective treatment for spinal cord injuries, which are always accompanied by death of neurons, breakage of axons, or nerve fibers, and inflammation. Even though new neural stem cells continue to be generated by the body, this inflammatory microenvironment (the immediate, small-scale conditions at the injury site) severely hinders regeneration of neurons and axons. Worse still, the prolonged activation of immune cells in this area also results in secondary lesions of the nervous system, in turn preventing the stems cells from differentiating themselves into new cell types.
If this aggressive immune response at the injury site could be moderated, there is the possibility that neural stem cells could begin differentiation and neural regeneration could occur.
Image title: Nanobiomaterial boosts neuronal growth in mice
Image caption: Researchers from the Department of Orthopedics of Tongji Hospital have successfully used a nanobiomaterial called layered double hydroxide (LDH) to inhibit the inflammatory environment surrounding spinal cord injuries in mice, accelerating regeneration of neurons and reconstruction of the neural circuit in the spine.
Image credit: Liming Cheng, Rongrong Zhu, Department of Orthopedics, Tongji Hospital of Tongji University
Image usage restrictions: News organizations may use or redistribute this image, with proper attribution, as part of news coverage of this paper only.
In recent years, a raft of novel nano-scale biomaterials -- natural or synthetic materials that interact with biological systems -- have been designed to assist activation of neural stem cells, along with their mobilization and differentiation. Some of these "nanocomposites" are capable of delivering drugs to the injury site and accelerate neuronal regeneration. These nanocomposites are especially attractive for spinal cord treatment due to their low toxicity. However, few have any ability to inhibit or moderate the immune reaction at the site, and so do not tackle the underlying problem. Moreover, the underlying mechanisms of how they work remains unclear.
Nanolayered double hydroxide (LDH) is a kind of clay with many interesting biological properties relevant to spinal cord injuries, including good biocompatibility (ability to avoid rejection by the body), safe biodegradation (breakdown and removal of the molecules after application), and excellent anti-inflammatory capability. LDH has already been widely explored in biomedical engineering with respect to immune response regulation, but mainly in the field of anti-tumor therapy.
"These properties made LDH a really promising candidate for the creation of a much more bene?cial microenvironment for spinal cord injury recovery," says Rongrong Zhu of the
Department of Orthopedics of Tongji Hospital, first author of the study.
Under the leadership of Liming Cheng, corresponding author of the study, the research team transplanted the LDH into the injury site of mice, and found that the nanobiomaterial had signi?cantly accelerated neural stem cells migration, neural di?erentiation, activation of channels for neuron excitation, and induction of action potential (nerve impulse) activation. The mice were also found to enjoy significantly improved locomotive behavior compared to the control group of mice. In addition, when the LDH was combined with Neurotrophin-3 (NT3), a protein that encourages the growth and differentiation of new neurons, the mice enjoyed even better recovery effects than the LDH on its own. In essence, the NT3 boosts neuronal development while the LDH creates an environment where that development is allowed to thrive.
Then, via transcriptional profiling, or analysis of gene expression of thousands of genes at once, the researchers were able to identify how the LDH performs its assistance. They found that once LDH is attached to cell membranes, it provokes greater activation of the "transforming growth factor-β receptor 2" (TGFBR2) gene, decreasing production of the white blood cells that enhance inflammation and increasing production of the white blood cells that inhibit inflammation. Upon application of a chemical that inhibits TGFBR2, they found the beneficial effects were reversed.
The understanding of how LDH performs these effects should now allow the researchers to tweak the therapy to enhance its performance and to finally create a comprehensive therapeutic system for spinal cord injuries--combining these biomaterials with neurotrophic factors like NT3-that can be used in clinical application on people.
INFORMATION:
Researchers at the University of Toronto have found that food industry interactions with government heavily outnumbered non-industry interactions on Bill S-228, also known as the Child Health Protection Act, which died in the Senate of Canada in 2019.
The researchers looked at more than 3,800 interactions, which included meetings, correspondence and lobbying, in the three years before the bill failed. They found that over 80 per cent were by industry, compared to public health or not-for-profit organizations.
They also found that industry accounted for over 80 per cent of interactions with the highest-ranking government offices, including elected parliamentarians and their staff and unelected ...
BINGHAMTON, NY -- When it comes to local government, does the gender of a mayor or county executive matter in sustainability policymaking? Yes, but only in certain ways, according to new research from Binghamton University, State University of New York.
Kristina Lambright, associate professor of public administration, and George Homsy, associate professor of public administration and director of the environmental studies program, explored the correlation between female leadership and local government adoption of sustainability policies in "Beyond community characteristics: a leader's gender and local government adoption of energy conservation practices and redistributive programmes," published recently ...
Researchers at Chalmers University of Technology, Gothenburg, Sweden, have developed a novel type of thermometer that can simply and quickly measure temperatures during quantum calculations with extremely high accuracy. The breakthrough provides a benchmarking tool for quantum computing of great value - and opens up for experiments in the exciting field of quantum thermodynamics.
A key component in quantum computers are coaxial cables and waveguides - structures which guide waveforms, and act as the vital connection between the quantum processor, and the classical electronics which control it. Microwave pulses travel along the waveguides to the quantum processor, and are cooled ...
Incorporating Black churches and clergy in COVID-19 vaccination education and distribution has been found to be an effective model in helping to increase vaccination delivery to historically at-risk populations in San Bernardino County, a study says.
Focused education efforts and an on-site mobile clinic in Black church parking lots resulted in the vaccinations of 417 people, 84% of whom were Black. The study also found an increase in Black attendance of mass vaccination clinics to 3.6% of total patients, up from 3%, in the week post-initiative.
Researchers at Loma Linda University School of Pharmacy published their findings on March 10 in The Lancet Global Health, ...
Almost 90 percent of infectious travelers could be detected with rapid SARS-CoV-2 tests at the airport, and most imported infections could be prevented with a combination of pre-travel testing and a five-day post-travel quarantine that would only lift with a negative test result, according to a computer simulation by UC San Francisco researchers.
The study offers much-needed data to airlines and states that have struggled through a year of the pandemic with little guidance on how to enable safe travel.
The issue is becoming more pressing as states ...
Root-knot nematodes (RKNs, Meloidogyne spp.) infect a broad range of plants, including several agriculturally important species such as cotton, soybean and corn, as well as various vegetables and ornamentals. These parasites cause roots to develop galls that result in severe plant damage and, ultimately, important crop losses. Growers currently use synthetic nematicides to manage RKNs; however, these compounds are detrimental to the microbial diversity of soil and harmful for the environment. Thus, it is necessary to develop alternative sustainable control methods.
"We have been seeking natural compounds that activate plant defense ...
A team of scientists at the University of Massachusetts Amherst have developed the thinnest and most sensitive flow sensor, which could have significant implications for medical research and applications, according to new research published recently in Nature Communications.
The research was led by Jinglei Ping, assistant professor of mechanical and industrial engineering, along with a trio of mechanical engineering Ph.D. students: Xiaoyu Zhang, who fabricated the sensor and made the measurement, Eric Chia and Xiao Fan. The findings pave the way for future research on all-electronic, in-vivo flow monitoring in investigating ...
A cast of so-called 'nurse cells' surrounds and supports the growing fruit fly egg during development, supplying the egg -- or 'oocyte' -- with all the nutrients and molecules it needs to thrive. Long viewed as passive in this process, the Drosophila egg actually plays an active role not only in its own growth, but also in the growth of the surrounding nurse cells, Princeton University researchers report on March 21 in Developmental Cell.
"Here we show an example of bidirectional communication -- a dialogue -- between different cells. The egg is taking an active hand in controlling its own feeding ...
Scientists from the Department of Physiology of the University of Granada (UGR) have shown that caffeine (about 3 mg/kg, the equivalent of a strong coffee) ingested half an hour before aerobic exercise significantly increases the rate of fat-burning. They also found that if the exercise is performed in the afternoon, the effects of the caffeine are more marked than in the morning.
In their study, published in the Journal of the International Society of Sports Nutrition, the researchers aimed to determine whether caffeine--one of the most commonly-consumed ergogenic substances in ...
LAWRENCE -- When a franchise buys a superstar like Tom Brady or LeBron James, the team tends to win more games. But do the fans follow? How much team loyalty is purchased along with an expensive star? Maybe not as much as some owners might hope -- in the NBA Finals between the Miami Heat and San Antonio Spurs, many fans expressed their dislike of the "bought" Miami team.
In a new paper published in the peer-reviewed Journal of Applied Social Psychology, researchers at the University of Kansas asked over 1,500 Americans how much they liked teams that purchased excellence and compared that with liking teams that built excellence from the ground up.
"People reliably ...