PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Researchers harvest energy from radio waves to power wearable devices

Researchers harvest energy from radio waves to power wearable devices
2021-03-25
(Press-News.org) From microwave ovens to Wi-Fi connections, the radio waves that permeate the environment are not just signals of energy consumed but are also sources of energy themselves. An international team of researchers, led by Huanyu "Larry" Cheng, Dorothy Quiggle Career Development Professor in the Penn State Department of Engineering Science and Mechanics, has developed a way to harvest energy from radio waves to power wearable devices.

The researchers recently published their method inMaterials Today Physics.

According to Cheng, current energy sources for wearable health-monitoring devices have their place in powering sensor devices, but each has its setbacks. Solar power, for example, can only harvest energy when exposed to the sun. A self-powered triboelectric device can only harvest energy when the body is in motion.

"We don't want to replace any of these current power sources," Cheng said. "We are trying to provide additional, consistent energy."

The researchers developed a stretchable wideband dipole antenna system capable of wirelessly transmitting data that is collected from health-monitoring sensors. The system consists of two stretchable metal antennas integrated onto conductive graphene material with a metal coating. The wideband design of the system allows it to retain its frequency functions even when stretched, bent and twisted. This system is then connected to a stretchable rectifying circuit, creating a rectified antenna, or "rectenna," capable of converting energy from electromagnetic waves into electricity. This electricity that can be used to power wireless devices or to charge energy storage devices, such as batteries and supercapacitors.

This rectenna can convert radio, or electromagnetic, waves from the ambient environment into energy to power the sensing modules on the device, which track temperature, hydration and pulse oxygen level. Compared to other sources, less energy is produced, but the system can generate power continuously -- a significant advantage, according to Cheng.

"We are utilizing the energy that already surrounds us -- radio waves are everywhere, all the time," Cheng said. "If we don't use this energy found in the ambient environment, it is simply wasted. We can harvest this energy and rectify it into power."

Cheng said that this technology is a building block for him and his team. Combining it with their novel wireless transmissible data device will provide a critical component that will work with the team's existing sensor modules.

"Our next steps will be exploring miniaturized versions of these circuits and working on developing the stretchability of the rectifier," Cheng said. "This is a platform where we can easily combine and apply this technology with other modules that we have created in the past. It is easily extended or adapted for other applications, and we plan to explore those opportunities."

INFORMATION:

This paper is co-authored by Jia Zhu, who earned a doctoral degree in engineering science and mechanics from Penn State in 2020; Zhihui Hu, former visiting professor in engineering science and mechanics at Penn State and current associate professor at Wuhan University of Technology in China; Chaoyun Song, assistant professor in the School of Engineering and Physical Sciences at Heriot-Watt University in Scotland; Ning Yi, who earned a doctoral degree in engineering science and mechanics from Penn State in 2020; Zhaozheng Yu, who earned a master's degree in engineering science and mechanics from Penn State in 2019; Zhendong Liu, former visiting graduate student in engineering science and mechanics at Penn State; Shangbin Liu, graduate student in engineering science and mechanics at Penn State; Mengjun Wang, associate professor in the School of Electronics and Information?Engineering at Hebei University of Technology in China; Michael Gregory Dexheimer, who earned a master's degree in engineering science and mechanics from Penn State in 2020; and Jian Yang, professor of biomedical engineering at Penn State.

Support for this work was provided by the National Science Foundation; the National Heart, Lung, and Blood Institute of the National Institutes of Health; and Penn State.


[Attachments] See images for this press release:
Researchers harvest energy from radio waves to power wearable devices

ELSE PRESS RELEASES FROM THIS DATE:

A T-cell stimulatory protein and interleukin-10 synergize to prevent gut inflammation

A T-cell stimulatory protein and interleukin-10 synergize to prevent gut inflammation
2021-03-25
BIRMINGHAM, Ala. - Researchers have found an unexpected synergy between a T-cell stimulatory protein -- the ICOS ligand -- and interleukin-10, an immunoregulatory cytokine, to prevent inflammatory bowel disease in mice. The study will aid the understanding of, and future research into, this immune disorder, which includes Crohn's disease and ulcerative colitis. About 1.6 million Americans have inflammatory bowel disease. Interleukin-10, or IL-10, was already known as a major player to prevent gut inflammation by establishing and maintaining immune homeostasis in the gut, where it is vital for the host to have a peaceful coexistence with normal intestinal microbes, while the immune system still stands ...

Turning wood into plastic

2021-03-25
Efforts to shift from petrochemical plastics to renewable and biodegradable plastics have proven tricky -- the production process can require toxic chemicals and is expensive, and the mechanical strength and water stability is often insufficient. But researchers have made a breakthrough, using wood byproducts, that shows promise for producing more durable and sustainable bioplastics. A study published in Nature Sustainability, co-authored by Yuan Yao, assistant professor of industrial ecology and sustainable systems at Yale School of the Environment (YSE), outlines the process of deconstructing the porous matrix of natural wood into a slurry. The researchers say the resulting material shows ...

Bringing Total Worker Health® to a multinational agribusiness in Latin America

2021-03-25
Researchers from the Center for Health, Work & Environment (CHWE) at the Colorado School of Public Health have published a paper in the International Journal of Environmental Research and Public Health studying the effectiveness of applying Total Worker Health (TWH) in an international context. The study, led by a team at CHWE, is the first to examine how a TWH framework operates outside of a western context in Latin America workforces. "Although recent reviews show that TWH intervention studies have had some global reach, the vast majority have been conducted in Western countries," says lead researcher Diana Jaramillo. "While global organizations, as well as governmental entities in Latin America, acknowledge the importance ...

When synthetic evolution rhymes with natural diversity

When synthetic evolution rhymes with natural diversity
2021-03-25
Researchers at GMI - Gregor Mendel Institute of Molecular Plant Biology of the Austrian Academy of Sciences, the University of North Carolina at Chapel Hill and The Howard Hughes Medical Institute (HHMI) use two complementary approaches to unveil a co-evolutionary mechanism between bacteria and plants and also explain complex immune response patterns observed in the wild. Together the papers change the way scientists have been thinking about the relationship of a bacterial antigenic component with its plant immune receptor. The two papers are published back to back in the journal Cell Host & Microbe. Immune responses have developed in virtually all organisms over evolutionary time scales to protect them from foreign ...

New class of versatile, high-performance quantum dots primed for medical imaging, quantum computing

New class of versatile, high-performance quantum dots primed for medical imaging, quantum computing
2021-03-25
LOS ALAMOS, N.M., March 25, 2021--A new class of quantum dots deliver a stable stream of single, spectrally tunable infrared photons under ambient conditions and at room temperature, unlike other single photon emitters. This breakthrough opens a range of practical applications, including quantum communication, quantum metrology, medical imaging and diagnostics, and clandestine labeling. "The demonstration of high single-photon purity in the infrared has immediate utility in areas such as quantum key distribution for secure communication," said Victor Klimov, lead author of a paper published ...

Carrying naloxone can save lives but newly abstinent opioid users resist

2021-03-25
Opioids are the main driver of fatal drug overdoses in the United States, according to the Centers for Disease Control and Prevention, resulting in 46,802 deaths in 2018, usually because the person stops breathing. Naloxone -- a Food and Drug Administration-approved medication used to reverse overdoses from opioids, such as heroin, morphine and oxycodone -- works by restoring normal respiration to a person whose breathing has slowed or stopped. "Opioid overdoses cause the largest number of accidental and avoidable deaths," said Peter Davidson, PhD, associate professor in the Department of Medicine at University of California San Diego School of Medicine. "The human toll of drug addiction is devastating. Using naloxone to prevent opiate overdoses can and has saved many lives." In ...

Chemists achieve breakthrough in the production of three-dimensional molecular structures

Chemists achieve breakthrough in the production of three-dimensional molecular structures
2021-03-25
A major goal of organic and medicinal chemistry in recent decades has been the rapid synthesis of three-dimensional molecules for the development of new drugs. These drug candidates exhibit a variety of improved properties compared to predominantly flat molecular structures, which are reflected in clinical trials by higher efficacy and success rates. However, they could only be produced at great expense or not at all using previous methods. Chemists led by Prof. Frank Glorius (University of Münster, Germany) and his colleagues Prof. M. Kevin Brown (Indiana University Bloomington) and Prof. Kendall N. Houk (University of California, Los Angeles) have now succeeded in converting several classes of flat ...

Skoltech researchers create a new human height inheritance model

2021-03-25
Skoltech scientists and their colleagues have proposed a new human height inheritance model that accounts for the interaction between various factors that influence adult human height. The research was published in the European Journal of Human Genetics. Human height is a classical quantitative trait that depends on sex, genetics, and the environment. Scientists from Skoltech, Novosibirsk State University, the Institute of Cytology and Genetics of the Siberian Branch of RAS, and the Institute of Science and Technology in Vienna analyzed the human height distribution ...

Ocean currents predicted on enceladus

2021-03-25
Buried beneath 20 kilometers of ice, the subsurface ocean of Enceladus--one of Saturn's moons--appears to be churning with currents akin to those on Earth. The theory, derived from the shape of Enceladus's ice shell, challenges the current thinking that the moon's global ocean is homogenous, apart from some vertical mixing driven by the warmth of the moon's core. Enceladus, a tiny frozen ball about 500 kilometers in diameter (about 1/7th the diameter of Earth's moon), is the sixth largest moon of Saturn. Despite its small size, Enceladus attracted the ...

HIV vaccine candidate's mysteries unlocked 20 years later

2021-03-25
About two decades after first devising a new kind of vaccine, Oregon Health & Science University researchers are unlocking why it stops and ultimately clears the monkey form of HIV, called SIV, in about half of nonhuman primates - and why it's a promising candidate to stop HIV in people. In scientific papers that were simultaneously published today in the journals Science and Science Immunology, creators of the cytomegalovirus, or CMV, vaccine platform describe the unusual biological mechanisms through which it works. The findings also helped fine-tune VIR-1111, the CMV-based experimental vaccine against HIV that was developed at OHSU and is now being evaluated in a Phase 1 clinical trial. The trial is being conducted by Vir Biotechnology, which ...

LAST 30 PRESS RELEASES:

Black Britons from top backgrounds up to three times more likely to be downwardly mobile

Developing an antibody to combat age-related muscle atrophy

Brain aging and Alzheimer's: Insights from non-human primates

Can cells ‘learn’ like brains?

How cells get used to the familiar

Seemingly “broken” genes in coronaviruses may be essential for viral survival

Improving hurricane modeling with physics-informed machine learning

Seed slippage: Champati cha-cha

Hospitalization following outpatient diagnosis of RSV in adults

Beyond backlash: how feeling threatened by diversity can trigger positive change

Climate change exposure associated with increased emergency imaging

Incorrect AI advice influences diagnostic decisions

Building roots in glass, a bio-inspired approach to creating 3D microvascular networks using plants and fungi

Spinning fusion fuel for efficiency

The American Pediatric Society names Dr. Beth Tarini as the recipient of the 2025 Norman J. Siegel New Member Outstanding Science Award

New Clinical Study Confirms the Anti-Obesity Effects of Kimchi

Highly selective pathway for propyne semihydrogenation achieved via CoSb intermetallic catalyst

GERD linked to cardiovascular risk factors: New insights from Mendelian randomization study

Content moderators are influenced by online misinformation

Adulting, nerdiness and the importance of single-panel comics

Study helps explain how children learned for 99% of human history

The impact of misinformation on Spanish-language social media platforms

Populations overheat as major cities fail canopy goals: new research

By exerting “crowd control” over mouse cells, scientists make progress towards engineering tissues

First American Gastroenterological Association living guideline for moderate-to-severe ulcerative colitis

Labeling cell particles with barcodes

Groundwater pumping drives rapid sinking in California

Neuroscientists discover how the brain slows anxious breathing

New ion speed record holds potential for faster battery charging, biosensing

Haut.AI explores the potential of AI-enhanced fluorescence photography for non-invasive skin diagnostics

[Press-News.org] Researchers harvest energy from radio waves to power wearable devices